
https://gm-neurips-2020.github.io/

Mining and Learning with
Graphs at Scale

https://gm-neurips-2020.github.io/

Welcome + Agenda
Introduction to Graphs + Application Stories
What are graphs? Why are they important?

Graph Mining: Basic tools and algorithms
How do we build, cluster, and use graphs at scale?

Graph Neural Networks
How can we use deep learning on graphs? How can

we use graphs in deep learning?

Systems, Algorithms and Scalability
How do we deal with massive graphs? How can

graphs help us organize Google-scale data?

Graph Mining | go/graph-mining | December 2019

An Introduction to Mining and
Learning with Graphs

Vahab Mirrokni

http://go/graph-mining

What are graphs?

Graphs are representations of relationships

(edges) between entities (nodes).

In the most general case, graphs have:

- varying numbers of edges…

- with different edge types going to

different node types…

- with a highly complex structure.

Traffic, maps (Google Maps)

Disease Spread
https://www.pnas.org/content/116/2/401

Image Pixels

Social Networks

Types of Graphs
Natural graphs are graphs in which the edge

relationship comes from an external source. Think:

payments, social networks, roadways,

coclick/cowatch.

By contrast, similarity graphs are graphs in which the

edge relationship is based on some measure of

similarity/distance between nodes. In these cases, we

start with a blob of (meta-)data and attempt to give

that blob structure via graph representation.

Why Graphs?

Computation on abstract concepts
Most data is fundamentally about relationships,

and graphs can help us . Graphs can also help

us abstract local information and use it to

extract useful global information from data.

Computation on different data types
We constantly deal with visual, textual, and

semantic information, and all of this data relates

to each other. Graphs provide a natural way to

handle multi-modal data.

Social Network Analysis, Wikimedia Commons

Why Graphs? Global and Local View
Global view:
Graph structure/topology can tell us a lot

about our data such as uncovering clusters

of data points, or providing distance

measures for otherwise intangible

concepts.

Local view:
Local edges to and from a node can tell us

something useful about a node --

something that is difficult to express with a

single element.

Search Query:
AppleApple

Inc.

The black center pixel is part of an eye, but that is
only apparent when you can see nearby pixels.

Graphs at Scale: Algorithms, Learning, & Systems
for Impact

Because graph representations are so flexible, we

often want to use them on Google-scale data.

We are often dealing with billions of nodes and

many more edges. To work with data at this scale,

we have to combine algorithmic ideas with the right

systems and ML models.

This can be very hard, and the devil is in details.

These tools power hundreds of projects at Google

in Search, Ads, Youtube, Play, Cloud, Maps,

Payments, and more.

Collaborative Filtering for
YouTube Recommendations

Same-meaning queries for Keyword
matching systems

Finding micro-markets in
designing A/B experiments

[KDD’19, NeurIPS’19]

Better Caching for saving 32% Flash
I/O for Search Infra(VLDB’19).

https://dl.acm.org/doi/pdf/10.1145/3292500.3330778
https://papers.nips.cc/paper/2019/hash/bc047286b224b7bfa73d4cb02de1238d-Abstract.html
http://www.vldb.org/pvldb/vol12/p709-archer.pdf

A bit of History: Graph Mining Team
https://research.google/teams/algorithms-optimization/graph-mining/

Mission: Develop the most scalable & reliable graph-based mining and learning library, and
make it universally accessible (XT edges)

Started ~11 years ago from scalable graph mining → graph-based learning and graph neural networks.
Team Skills: Algorithms, Systems, and ML. Research + Engineering.

Publish in a variety of venues: NeurIPS, ICML, SODA, FOCS, STOC, VLDB, KDD, WWW, WSDM, AAAI, and ...

Lessons Learned:
Algorithms+System Research: Important to combine right algorithms and distributed systems

● Tried Pregel first, but then it was not suitable for some large-scale applications (e.g., fault-tolerance)

● Then, we built infrastructure on top of MapReduce/Flume and Distributed Hash Table Service (DHT).

● Had to rethink the systems for Tensorflow and GNN training via Graph Sampling...

More popular tools vs. less commonly tools in our library:
● Widely Used: Graph Building and Clustering, Semi-supervised Learning, GNNs and Embedding.

● Less Used: Shortest Paths, Matchings, Graph Similarity, Graph-based centrality scores.

https://research.google/teams/algorithms-optimization/graph-mining/

Computation Frameworks: System+Algorithms+ML
Many popular frameworks for big data/ML analysis:

● MapReduce / Hadoop [DeanG, OSDI’04]

● Pregel / Giraph [e.g., MalewiczABDHLC, SIGMOD’10]

● TensorFlow/Pytorch/Keras [e.g., Abadi et al]

● Beam / Flume / Cloud Dataflow [e.g., AkidauBCC+, VLDB’15]

Our library has four main parts:

1. Distributed Algorithms: Mapreduce/Flume/DHT

○ graphs with XT edges in hours

2. Multi-core In-memory: GBBS graph-based

○ XXB (XXM*) edges in minutes (seconds*)

3. GraphTesnor: Graph Neural Networks in Tensorflow

○ Graph analysis integrated w/ deep learning tools

4. Dynamic Graph Mining (not covered here)

○ Handling online requests very fast

The Graph Mining Toolbox: Overview

Information Propagation
Label Propagation,

Cluster Propagation,
Iterative Classification,

Semi-supervised Learning

Graph Signals
Local Density, PageRank,
Centrality, Oddball Score,
Clustering Coefficients,

Graph Embeddings

Graph Building

Nearest Neighbors,
Locally Sensitive Hashing,

Local Neighborhood Search,
Graph Learning

Clustering

Hierarchical Clustering,
Connected Components

Semi-supervised Clustering,
Community Detection

Topology Analysis and
Similarity Ranking

Personalized PageRank,
ego-Net Mining,

Sampling like Coverage,

Graph Neural Networks
GNNs: Graph Convolutions,

Message-Passing Neural Nets,
Neural-based Embedding

Tools for Learning with Graphs

Semi-supervised Clustering
Optimized Clustering for labeled training data

Graph-based Semi-supervised Learning(SSL)
Learn a label propagation function from training data.

Neural Graph Embedding & Graph Convolutions
Apply deep learning to arbitrary graph structures

Grale (Learning Graphs)
Learn graph structure from data.

?

The Graph Mining Toolbox
Graph Building and Graph Learning
Graph Building answers two questions: what is

the optimal graph for a given dataset; and how

can we create that graph in a scalable way.

Techniques: Locally sensitive hashing(LSH),

Local Search, Auto-encoders, ...

Clustering
Clustering tools allow us to identify important

patterns in data, aka clusters.

Techniques: LSH/sketching, random walks,

message-passing, Composable Core-sets for

hierarchical, overlapping, spectral, balanced

clustering, ...

The Graph Mining Toolbox

Information Propagation & graph-based SSL
Information sparsity is a common problem in big data.

We use graphs for semi-supervised learning(SSL) to

spread information predicting missing data and

correcting misinformation.

Techniques: graph-based semi-supervised learning,

spectral theory, iterative classification.

Graph Signals and Topology Analysis
Graph structure allows computing multi-hop

similarity and graph signals, e.g., egoNets and

Personalized PageRank. In a multimodal world, we

can use graph information to extract useful signals,

e.g., edge density and graph embedding.

Techniques: random walks, clustering, embedding.

Graph Neural Networks

Advances in deep learning have helped us build

and deploy novel graph building and label

propagation techniques. We’ve also been

developing a scalable Graph Convolutional

Network system that promises to completely

upend how we think about graph data.

Techniques: Graph Convolutions, Message-Passing

Neural Nets, Neural-based Embedding, Graph

Attention Models, PPR for GNNs, Self-supervised

Learning.

1. learn to predict label from
features 2. add predicted labels on

unlabeled nodes

3. Extract
embeddings

Canonical Uses: Spam, Fraud and Abuse Detection

Anomaly Detection via Density Clustering
Core intuition: statistically unlikely dense

clusters correlate highly with malicious behavior.

Graph Mining tools let us tackle Trust&Saftey problems in many ways.

Preventing spam, fraud, and abuse is central for many products, e.g., YouTube and Ads.

Label Propagation
Core intuition: start with known bad actors, and

use the graph structure to identify nearby

neighbors that may also be suspicious.

Canonical Uses: Improving ML Models
Relationship Discovery
Ever wonder how Social Networks find “People

you may know”? The famous ‘social graph’ is

represented as a real graph. We can use graph

information to discover connections that may

not appear naturally.

Feature Extraction
Generated graph signals like clusters, PPR

vectors, and graph embeddings are useful as

training signals to upstream ML models. In

multi-modal models, graph data can be seen as

another modality, part of the larger whole.

Google Images ‘Visually

Similar Images’ is powered

in part through Graph

Mining technologies.

DNN

Canonical Uses: Efficient Computing
Resource Efficiency: Communication Overhead
We can use graph partitioning algorithms like

balanced partitioning to intelligently split large

datasets, reducing overhead for distributed

computing, e.g., in Google Driving Directions.

Data Efficiency and Active Learning
We can utilize graphs to answer queries like ‘what

are the most diverse points in my dataset’, which

can power active learning loops. Graph-based

semi-supervised learning can also be used in

data-sparse models with less data.

Graph clustering is used by Maps to help optimize

backend of driving directions [WSDM’16].

f(
)

Max Cover

Graph-based clustering[NeurIPS’17] and coverage[KDD’18]

is applied for active learning and feature engineering.

https://dl.acm.org/doi/10.1145/2835776.2835829
https://papers.nips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html
https://www.kdd.org/kdd2018/accepted-papers/view/optimal-distributed-submodular-optimization-via-sketching

The end of the beginning
The Graph Mining team combines research with

application to create a powerful suite of tools.

We’re excited to share what we’ve been working on!

Hopefully, the last twenty minutes or so have

provided a useful backdrop for why graph-based

learning at scale is so important.

During the rest of this workshop, you’ll hear from

experts in the field discussing our work in much

more depth, with a general focus on distributed

algorithms and scalable graph-based learning.

GoogleAI Graph Mining
https://research.google/teams/

algorithms-optimization/graph-mining/

Part of Algorithms and Optimization

https://research.google/teams/algorithms-optimization/

https://research.google/teams/algorithms-optimization/graph-mining/
https://research.google/teams/algorithms-optimization/graph-mining/
https://research.google/teams/algorithms-optimization/

Presenters

Bryan Perozzi

Martin Blais

Amol KapoorAlessandro Epasto

Jean Pouget-Abadie

Allan Heydon

John Palowitch Jakub Łącki

Jonathan Halcrow

Vahab Mirrokni

GraphAI Graph Mining
Graph Mining – Google Research

Part of Algorithms & Optimization – Google Research

André Linhares ,
Andrew Tomkins,
Arjun Gopalan
Ashkan Fard,
CJ Carey,
David Eisenstat,
Dustin Zelle,
Filipe Almeida,
Hossein Esfandiari,

Kevin Aydin,
Jason Lee,
Matthew Fahrbach,
MohammadHossein Bateni,
Nikos Parotsidis,
Reah Miyara,
Sam Ruth,
Silvio Lattanzi,
Warren Schudy, and
many collaborators

https://research.google/teams/algorithms-optimization/graph-mining/
https://research.google/teams/algorithms-optimization/

Rest of the Workshop
-Applications: Covid Forecasting, Privacy, Causal Inference.

-Graph Mining: Basic tools and algorithms
How do we learn, cluster, and use graphs at scale? Graph

Learning, Similarity Ranking, Clustering, and Label Smearing.

-Graph Neural Networks
How can we use deep learning on graphs? How can we use

graphs in deep learning?

-Algorithms, Systems and Scalability
How do we deal with massive graphs and use them to

organize Google-scale data? TensorFlow, Flume, Multi-core.

Citations
 (excluding papers - which will be covered later)

ICONS:

Document: https://thenounproject.com/search/?q=documents&i=3594373

Forward: https://thenounproject.com/search/?q=time+forward&i=2596961

Globe: https://thenounproject.com/search/?q=globe&i=3119957

Image: https://thenounproject.com/search/?q=images&i=3593232

Network: https://thenounproject.com/search/?q=network&i=1350199

Talk Bubble: https://thenounproject.com/search/?q=talk+bubble&i=842574

Handshake: https://thenounproject.com/search/?q=handshake&i=983923

Handshake: https://thenounproject.com/search/?q=handshake&i=3592892

Publisher: https://thenounproject.com/search/?q=publisher&i=3048742

Advertise: https://thenounproject.com/search/?q=advertiser&i=2374780

Account: https://thenounproject.com/search/?q=account&i=1931153

Network: https://thenounproject.com/term/network/54119/

Clustering: https://thenounproject.com/search/?q=clusters&i=195949

Network: https://thenounproject.com/search/?q=network&i=1061260

GRAPHS

Disease Spread: https://www.pnas.org/content/116/2/401

Social Network Analysis:

https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png

OTHER:

Cat: https://commons.wikimedia.org/wiki/File:Cat_March_2010-1.jpg

Analyze Love: https://xkcd.com/601/

CC3.0: https://creativecommons.org/licenses/by/3.0/us/legalcode

CC2.5: https://creativecommons.org/licenses/by-nc/2.5/

https://thenounproject.com/search/?q=documents&i=3594373
https://thenounproject.com/search/?q=time+forward&i=2596961
https://thenounproject.com/search/?q=globe&i=3119957
https://thenounproject.com/search/?q=images&i=3593232
https://thenounproject.com/search/?q=network&i=1350199
https://thenounproject.com/search/?q=talk+bubble&i=842574
https://thenounproject.com/search/?q=handshake&i=983923
https://thenounproject.com/search/?q=handshake&i=3592892
https://thenounproject.com/search/?q=publisher&i=3048742
https://thenounproject.com/search/?q=advertiser&i=2374780
https://thenounproject.com/search/?q=account&i=1931153
https://thenounproject.com/term/network/54119/
https://thenounproject.com/search/?q=clusters&i=195949
https://thenounproject.com/search/?q=network&i=1061260
https://www.pnas.org/content/116/2/401
https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png
https://commons.wikimedia.org/wiki/File:Cat_March_2010-1.jpg
https://xkcd.com/601/
https://creativecommons.org/licenses/by/3.0/us/legalcode
https://creativecommons.org/licenses/by-nc/2.5/

Up next, we’ll dive into a few

Application Stories of Graph-based

Learning, starting with Amol Kapoor

discussing GNNs and COVID.

23

Mining and Learning with Graphs at Scale | NeurIPS’20

Application
Stories

Amol Kapoor, Alessandro
Epasto, Jean Pouget-Abadie

Modelling COVID with GNNs

Privacy

Experimental Design and
Causal Inference

24

Mining and Learning with Graphs at Scale | NeurIPS’20

Modeling COVID with
Spatio-Temporal Graph Neural
Networks
Amol Kapoor

Mining and Learning with Graphs at Scale | NeurIPS’20

The Basics

Mining and Learning with Graphs at Scale | NeurIPS’20

The Basics

Deep ML models learn a function f(x),

where x is some (curated) feature set.

X
X X

Mining and Learning with Graphs at Scale | NeurIPS’20

The Basics

Deep ML models learn a function f(x),

where x is some (curated) feature set.

Intermediate states -- embeddings --

in Deep ML models capture complex

interactions between features in high

dimensional space.

X
X X

Mining and Learning with Graphs at Scale | NeurIPS’20

The Basics

Deep ML models learn a function f(x),

where x is some (curated) feature set.

Intermediate states -- embeddings --

in Deep ML models capture complex

interactions between features in high

dimensional space.

Deep ML models are optimized for

some loss, which in turn defines how

each intermediate embedding is

structured.

X
X X

Mining and Learning with Graphs at Scale | NeurIPS’20

Deep ML models are powerful

because you can put anything on the

ends, and the intermediate state will

fill in the blanks.

Mining and Learning with Graphs at Scale | NeurIPS’20

DL in Epidemiology

SIR Models modelling disease spread by

constraining the relationship between three

groups: Susceptible, Infected, and Recovered.

Accurately identifying these groupings (and

the transition functions between them) is

extremely difficult.

This is where deep learning comes in. DL

shows ability in processing complex disease

dynamics and multidimensional data that

cannot be captured by traditional

compartmental models and statistical models.

`

Mining and Learning with Graphs at Scale | NeurIPS’20

Modelling COVID

Mining and Learning with Graphs at Scale | NeurIPS’20

Intuition: epidemiological modelling depends on

time and space. The number of cases I have

tomorrow is a function of the cases I had yesterday,

and the cases of my neighbors today.

This is a multimodal problem.

Mining and Learning with Graphs at Scale | NeurIPS’20

Can utilize mobility data to create temporal

and spatial edges between nodes, in order

to understand how people (and, by

extension, COVID) move around.

Google has rich mobility info through

aggregated GPS analysis. This allows us to

answer questions like ‘how many people

flew from King County, Washington, to

Queens, NY’, or ‘how many people in LA

used the subway today’.

Mobility Data

Top: Inter-county mobility data from King County.
Bottom: Intra-county mobility data from King County.

Mining and Learning with Graphs at Scale | NeurIPS’20

Modelling COVID
Day 10

Day 9

Day 8

Using NYT COVID report data and Google

mobility data at US county level, we created

a spatio-temporal graph. Each node was a

time + place, and had case counts and

intra-mobility data as self-features.

The graph can be modeled as 150 slices.

Edges within each slice are spatial, and are

weighted based on mobility. Edges between

slices are temporal, and are (inversely)

weighted based on the amount of time

passed between the edge.

King County

Snohomish

Multnomah

Mining and Learning with Graphs at Scale | NeurIPS’20

Why GCNs?

One of the greatest benefits of graph data is that

we can incorporate context into our analysis.

When analyzing a node, we can surface its

neighborhood as a source of information.

GCNs supercharge this principle by applying deep

learning on top. We can use a GCN to build a

learned hierarchical representation around a given

node, allowing us to pull in contextual information

that will help us predict node level features.

Like, say, COVID case counts.

H0 H1 H2

P

mlp

Mining and Learning with Graphs at Scale | NeurIPS’20

(Initial) Results

Initial results show that the GNN is able

to successfully use the mobility data to

better predict next-day-change in

COVID caseload.

With virtually no hyperparameter tuning

or feature engineering, we achieve as

significant reduction in error on RMSLE

and Pearson Correlation.

Collaborators: sherryben@, obanion@, Flourish

Mining and Learning with Graphs at Scale | NeurIPS’20

(Initial) Results

Mining and Learning with Graphs at Scale | NeurIPS’20

(Initial) Results

Mining and Learning with Graphs at Scale | NeurIPS’20

Conclusions

Mining and Learning with Graphs at Scale | NeurIPS’20

Deep ML models are powerful because they can take
arbitrary inputs and learn mappings to requested

outputs.

Mining and Learning with Graphs at Scale | NeurIPS’20

Graphs provide a means to incorporate context, which
is a powerful source of information. GCNs build this

context into a unifying deep-ml framework.

Mining and Learning with Graphs at Scale | NeurIPS’20

GCNs can be used to model COVID (and other things!),
and represent a powerful tool-in-the-toolbox to tackle

all sorts of epidemiological problems.

Mining and Learning with Graphs at Scale | NeurIPS’20

Citations
Based on Work By:

Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, Shawn O'Banion.

Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks.

MLG’20, epiDAMIK’20. https://arxiv.org/abs/2007.03113

New York Times. Coronavirus (Covid-19) Data in the United States.

https://github.com/nytimes/covid-19-data

ICONS:

Mind: https://thenounproject.com/search/?q=deep+learning+graph&i=1705433

OTHER:

CC3.0: https://creativecommons.org/licenses/by/3.0/us/legalcode

CC2.5: https://creativecommons.org/licenses/by-nc/2.5/

https://arxiv.org/abs/2007.03113
https://github.com/nytimes/covid-19-data
https://thenounproject.com/search/?q=deep+learning+graph&i=1705433
https://creativecommons.org/licenses/by/3.0/us/legalcode
https://creativecommons.org/licenses/by-nc/2.5/

Mining and Learning with Graphs at Scale | NeurIPS’20

Application Story: Privacy
Alessandro Epasto

Mining and Learning with Graphs at Scale | NeurIPS’20

Privacy is a fundamental concern in the analysis of user data and graphs
are no exception.

Two application stories for privacy in graphs:

1. Can we use graph mining (graph clustering) to improve user
privacy?

2. How can we protect the users’ privacy in a social network
application?

Privacy for Graphs, Graphs for Privacy

Mining and Learning with Graphs at Scale | NeurIPS’20

As part of the Chrome
Privacy Sandbox effort
to deprecate the use
of third-party cookies.

FLoC aim at replacing
identifying third-party
cookies with
anonymous cookies
shared by many users.

FLoC -- Federated Learning of Cohorts

Output: FLoCs with
>= k users with similar
browsing interests

Input: User x
Browsing history
data.

Users Domains
Users

More details on FLoC: https://github.com/jkarlin/floc

https://github.com/jkarlin/floc

Mining and Learning with Graphs at Scale | NeurIPS’20

The essence of the FLoC is a
size-constrained clustering problem
where clusters must respect minimum
sizes.

We evaluated many clustering
algorithms including Hierarchical Graph
Clustering algorithms like Affinity
(discussed in a later talk).

Affinity outperformed all variants tested
in our experiment reported in the public
FLoC white paper.

Clustering for Privacy

Results on the public MSD
dataset.

More details: bit.ly/3ngKcrK

http://bit.ly/3ngKcrK

Mining and Learning with Graphs at Scale | NeurIPS’20

Consider a social-network-based
recommender system.

Can the user receive suggestions based on
their social contact, without sharing their local
private device data or even their private
social contacts with the central
recommendation system?

Based on work Chierichetti, Epasto Kumar,
Lattanzi, Mirrokni, KDD’15 (best paper award)
and Epasto, Esfandiari, Mirrokni, WWW’19.

On-Device Public-Private Graph Model

Image Credit “Freinds by Med Marki from the Noun Project”

Mining and Learning with Graphs at Scale | NeurIPS’20

Public-Private Graphs

Mining and Learning with Graphs at Scale | NeurIPS’20

Can we keep all private data and private contacts on the users’ devices and
solve important machine learning problems without any privacy loss?

Yes! We provide algorithms for the following problems:
• K-clustering (k-center, k-means);
• Personalized social-network based recommendations: heavy hitters,

linear suggestions.

On-Device Algorithms for Public-Private Data with Absolute Privacy, Epasto,
Esfandiari, Mirrokni, WWW’19

On Device Public-Private Computation

Mining and Learning with Graphs at Scale | NeurIPS’20

Data Separation

Public contacts in the cloud

Local
Private
Contacts

Mining and Learning with Graphs at Scale | NeurIPS’20

Two Step Process
Sends the sketches
to the individual
users.

Public Graph

Preprocessed by the cloud.

Synopsis of
public data

Private
Contacts
exchange
their public
sketches

Mining and Learning with Graphs at Scale | NeurIPS’20

Thank you for your attention!

Please check out our next sessions.

Mining and Learning with Graphs at Scale | NeurIPS’20

Clustering and Causal Inference
Jean Pouget-Abadie

Mining and Learning with Graphs at Scale | NeurIPS’20

What is causal inference?

● Causal Inference is a branch of statistics

that tries to establish the link between

cause and effect.

● Randomized trials (e.g., clinical trials, A/B

tests) assign units (e.g., patients, users)

to a treatment condition or control

condition.

56

Treatment Control

Mining and Learning with Graphs at Scale | NeurIPS’20

Where does clustering come in?

● Randomized trials can suffer from

interference if the treatment of one

unit affects another.

● To place units in conditions as close

to the “all treated” and “all control”

world, cluster-randomized trials

assign units to treatment/control in

clusters.

57

Cluster randomized trial Randomized Assignment

Control unit

Treated unit

Treatment-control interaction

Mining and Learning with Graphs at Scale | NeurIPS’20

Example 1: vaccination trials

58

A unit surrounded by
vaccinated units is less
likely to get sick than...

... a unit partially
surrounded by
vaccinated units.

Vaccinated

Non-vaccinated

● Community clustering has been

studied for vaccination trials. Such

a clustering can be as simple as

individual vs household [1].

[1] Datta, Susmita, M. Elizabeth Halloran, and Ira M. Longini Jr. "Efficiency of estimating vaccine
efficacy for susceptibility and infectiousness: randomization by individual versus household."
Biometrics 55.3 (1999): 792-798.

Mining and Learning with Graphs at Scale | NeurIPS’20

Example 2: social networks

● Balanced partitioning is a popular method to

split a social network into buckets and avoid

too many interactions between the edges of a

social network [1, 2].

59

Word of mouth can easily
spread through a social network

[1] Eckles, Dean, Brian Karrer, and Johan Ugander. "Design and analysis of
experiments in networks: Reducing bias from interference." Journal of Causal
Inference 5.1 (2016).

[2] Gui, Huan, Ya Xu, Anmol Bhasin, and Jiawei Han. "Network a/b testing: From
sampling to estimation." In Proceedings of the 24th International Conference on
World Wide Web, pp. 399-409. 2015.

Mining and Learning with Graphs at Scale | NeurIPS’20

Example 3: online marketplaces

60

Buyers in online marketplaces
compete with one another.
Changing one market cluster..

...affects all buyers in it and
all buyers competing
against them.

● Clustering has also been studied for experimentation of

online marketplaces [1, 2]

● Different methods have been used. Geographical
partitioning [3], and more recently correlation clustering

[4].

[1] Pouget-Abadie, Jean, Vahab Mirrokni, David C. Parkes, and Edoardo M. Airoldi. "Optimizing
cluster-based randomized experiments under monotonicity." In KDD, pp. 2090-2099. 2018.

[2] Holtz, David, Ruben Lobel, Inessa Liskovich, and Sinan Aral. "Reducing Interference Bias in Online
Marketplace Pricing Experiments." arXiv:2004.12489 (2020).

[3] Rolnick, David, Kevin Aydin, Jean Pouget-Abadie, Shahab Kamali, Vahab Mirrokni, and Amir Najmi.
"Randomized Experimental Design via Geographic Clustering." In KDD, pp. 2745-2753. 2019.

[4] Pouget-Abadie, Jean, Kevin Aydin, Warren Schudy, Kay Brodersen, and Vahab Mirrokni. "Variance
Reduction in Bipartite Experiments through Correlation Clustering." In NeurIPS, pp. 13309-13319. 2019.

Mining and Learning with Graphs at Scale | NeurIPS’20

Deep Dive: Correlation Clustering for
Marketplace Experiments

● In [1], the authors show that a specific instance of
correlation clustering is optimal for maximizing the power
of item-diverted user-focused marketplace experiments.

61

Treatment Control

[1] Pouget-Abadie, Jean, et al. "Variance Reduction in Bipartite Experiments through Correlation Clustering." NeurIPS’2019.

Noise level

Correlation Clustering outperforms other
clustering methods [1]

Graph Mining and
Learning at Scale

Mining and Learning with Graphs at Scale | NeurIPS’20

Agenda

● Grale: Learning Graphs
● Similarity Ranking
● Clustering At Scale
● Community Detection
● Label Propagation

63

Mining and Learning with Graphs at Scale | NeurIPS’20

Grale: Learning Graphs
Jonathan Halcrow

Paper: "Grale: Designing Networks for Graph Learning" KDD'20

https://dl.acm.org/doi/10.1145/3394486.3403302

Mining and Learning with Graphs at Scale | NeurIPS’20

A Cartoon
Example
In a toy example, we may be given a
partially labeled set of nodes and a graph
indicating some similarity relation on the
nodes.

Mining and Learning with Graphs at Scale | NeurIPS’20

A Cartoon
Example
In a toy example, we may be given a
partially labeled set of nodes and a graph
indicating some similarity relation on the
nodes.

We use the graph to infer labels for the
unlabeled set, by spreading from the
labeled nodes.

Mining and Learning with Graphs at Scale | NeurIPS’20

A "Real-World"
Example
In real world examples, the picture is rarely
this clear. Instead of a single set of
relationships closely aligned with our target
labels, we usually have many types of
relationships to pick from, of varying
quality.

Mining and Learning with Graphs at Scale | NeurIPS’20

A "Real-World"
Example
In real world examples, the picture is rarely
this clear. Instead of a single set of
relationships closely aligned with our target
labels, we usually have many types of
relationships to pick from, of varying
quality.

A bad choice of graph will yield a poorly
performing graph learning algorithm.

A Bad Choice

Mining and Learning with Graphs at Scale | NeurIPS’20

A "Real-World"
Example
In real world examples, the picture is rarely
this clear. Instead of a single set of
relationships closely aligned with our target
labels, we usually have many types of
relationships to pick from, of varying
quality.

The choice of graph is critical for the
performance of graph learning algorithms.

A Better Choice

Mining and Learning with Graphs at Scale | NeurIPS’20

The Graph
Design Problem
Given:

● A multi-modal feature space 𝕏,
each mode with a natural
distance measure, 𝜿i

● A partial labeling on this feature
space

● A learning algorithm which is a
function of some graph G
having vertex set equal to the
elements of 𝕏

Find: An edge weighting function
which allows us to construct a graph
which optimizes the performance of
the learning algorithm

Observed relationships
vs. an ideal similarity
measure

Mining and Learning with Graphs at Scale | NeurIPS’20

Application to
label
propagation
In our paper, we focus on the designing graphs
for a single hop of label propagation.

Mining and Learning with Graphs at Scale | NeurIPS’20

Application to
label
propagation
In our paper, we focus on the designing graphs
for a single hop of label propagation.

We assume that the nodes in our graph have
several different features associated with them,
each with a natural distance. We learn the edge
weights as functions of these distances.

Mining and Learning with Graphs at Scale | NeurIPS’20

Application to
label
propagation
In our paper, we focus on the designing graphs
for a single hop of label propagation.

We assume that the nodes in our graph have
several different features associated with them,
each with a natural distance. We learn the edge
weights as functions of these distances.

We show that in this setting, minimizing the
log-loss for the multi-class label propagation
classifier is equivalent to minimizing the log-loss
for the binary prediction that two nodes are in
the same class

Mining and Learning with Graphs at Scale | NeurIPS’20

Grale: A Scalable
Solution
Step 1:

Generate candidate pairs via locality
sensitive hashing

Step 2:

Train a pairwise model to predict same
class membership, or apply the model to
infer similarity on pairs

Bucket points via LSH

Model training Graph Building

Mining and Learning with Graphs at Scale | NeurIPS’20

Locality Sensitive
Hashing
A key requirement for Grale is that it must
scale to datasets containing billions of
nodes, making an all-pairs search
infeasible. Instead we rely on approximate
similarity search using locality sensitive
hashing.

An LSH function is a hash function with the
property that points which are 'close' are
likely to hash to the same value, while
points which are 'far' are unlikely to.

h1

h2

h3

h4

Mining and Learning with Graphs at Scale | NeurIPS’20

Locality Sensitive
Hashing
In our case, 'close' and 'far' depend on what
our model learns. We show that
combinations of LSH functions for our
simpler per-feature distances can serve as
LSH functions for the model.

Points which are 'close' in feature values,
should also be 'close' according to our
learned similarity (with some basic
continuity assumptions).

h1

h2

h3

h4

Mining and Learning with Graphs at Scale | NeurIPS’20

Locality Sensitive
Hashing
Further Reading (from literature and our team):

● Gionis et al - Similarity Search in High Dimensions via
Hashing

● Charikar Similarity estimation techniques from rounding
algorithms",

● Broder et al - Syntactic Clustering of the Web
● Indyk, Motwani - Approximate Nearest Neighbors:

Towards Removing the Curse of Dimensionality
● Locality-Sensitive Hashing Scheme Based on p-Stable

Distributions (Andoni et al)
● Chen et al - Locality-Sensitive Hashing for

f-Divergences and Krein Kernels: Mutual Information
Loss and Beyond

h1

h2

h3

h4

http://www.vldb.org/conf/1999/P49.pdf
http://www.vldb.org/conf/1999/P49.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf
http://acberg.com/bigdata/papers/broder_shingling.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/IndykM-curse.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/IndykM-curse.pdf
http://theory.lcs.mit.edu/~indyk/nips-nn.ps
http://theory.lcs.mit.edu/~indyk/nips-nn.ps
https://papers.nips.cc/paper/2019/file/21b29648a47a45ad16bb0da0c004dfba-Paper.pdf
https://papers.nips.cc/paper/2019/file/21b29648a47a45ad16bb0da0c004dfba-Paper.pdf
https://papers.nips.cc/paper/2019/file/21b29648a47a45ad16bb0da0c004dfba-Paper.pdf

Mining and Learning with Graphs at Scale | NeurIPS’20

Model Structure

The specific choice of model structure may
vary depending on the application, but
most commonly we use a neural net which
combines a two-tower structure to learn
embeddings over the nodes and combines
it with the 'natural' distances in the data.

Mining and Learning with Graphs at Scale | NeurIPS’20

Evaluation on
small datasets
We compare Grale against other techniques which
set out to learn task specific similarities for label
propagation.

USPS is a handwritten digit set, scanned from
envelopes by the U.S. postal service and
represented as numeric pixel values.

MNIST is an-other popular handwritten digit
dataset, where the images have been
size-normalized and centered.

Mining and Learning with Graphs at Scale | NeurIPS’20

Evaluation on
small datasets
We compare Grale against other techniques which
set out to learn task specific similarities for label
propagation.

We compare to other approaches tested in the
paper: "A Quest for Structure: Jointly Learning the
Graph Structure and Semi-Supervised
Classification" by Wu et al.

The other methods all focus on tuning
per-dimension bandwidths in:

Mining and Learning with Graphs at Scale | NeurIPS’20

Deployment for
YouTube
Grale has been deployed in many different
settings within Google. In particular it is
used by YouTube to detect malicious
actors.

We train the Grale model in this case to
differentiate pairs of abusive items from
pairs where at least one item is
non-abusive.

A subgraph of related items on
YouTube found by Grale

Mining and Learning with Graphs at Scale | NeurIPS’20

LSH Efficiency

A comparison of the LSH function used for
YouTube and a naive baseline.

"Strong ties" are the fraction of pairs
returned by LSH that are closer than a
distance useful for high precision
decisions.

"Weak ties" are those with worse than a
moderate precision threshold.

Mining and Learning with Graphs at Scale | NeurIPS’20

Single Nearest
Neighbor
performance
In practice, Grale is used as an input to a
more complex abuse fighting system. To
illustrate the performance of the graph
alone, we compute the precision and recall
of a single nearest neighbor classifier.

In this evaluation, we select the oldest 25%
of known abusive nodes as seeds, and
evaluate against the newest 75%.

Mining and Learning with Graphs at Scale | NeurIPS’20

Comparison to
other
approaches
The Grale+Label Propagation system is
deployed alongside various heuristics and
content based classifiers.

For the type of items that we target here,
we increase recall by 89% vs these other
approaches alone. In particular we find
many items that are missed by a first pass
by purely content based classifiers.

Mining and Learning with Graphs at Scale | NeurIPS’20

YouTube Graph
Structure
Sorting the degree distribution in the graph
by abuse status. We see that abusive nodes
have much higher degree on average and
are particularly strongly connected to
other abusive nodes. This is precisely what
we are hoping to achieve.

Mining and Learning with Graphs at Scale | NeurIPS’20

Example Clusters Found on YouTube

Mining and Learning with Graphs at Scale | NeurIPS’20
87

What else can we do?

A

B

● Unsupervised structural similarity measures
○ Personalized PageRank and more (see next

section!)
● Graph Embeddings / Graph Neural Network

methods
○ DeepWalk (later)
○ Deep Graph InfoMax

● Variational Autoencoders
○ Usefully captures the key information with a

natural similarity measure
● Can also include any of the above as signals to

Grale style models!

Graph Mining | go/graph-mining | December 2019

Similarity Ranking
Alessandro Epasto

http://go/graph-mining

Similarity Ranking
Before we have seen how to build a similarity graph given
non-graph data.

Here we will address the question: Given a graph, how
similar are two nodes in the graph? Can we predict
missing edges from the graph?

Classical graph problem with applications in:

● Link prediction;
● Recommender systems, Collaborative filtering;
● Spam & Abuse detection, Anonymily detection;
● Graph embeddings;
● Clustering;
● Feature engineering in graph-based learning.

Classical Unsupervised Similarity Scores
The unsupervised version of the problem has a long stream of
work starting from Liben-Nowell & Kleinberg in 2004.

Input: a weighted graph (no additional side information).

Output: a score for a given pair of nodes in the graph.

Similarity scores between pairs of nodes are defined by
multi-hop neighborhood measures, e.g. number of direct, or
indirect connections between users.

Extensions include using side information, heterogeneous
graphs, etc.

A

B

Classical Unsupervised Similarity Scores
Some classic examples, similarity of A and B:

● Single hop:
○ Common Neighbors |N(A) ⋂ N(B)| = 2
○ Jaccard coefficient |N(A) ⋂ N(B)| / |N(A) ⋃ N(B)| = ⅔
○ Adamic Adar

● Multi-hop:
○ Katz score
○ Personalized PageRank.

A

B

v u

The stationary distribution assigns a similarity score to each node in
the graph w.r.t. node v.

For a node v (the seed) and a probability alpha

Personalized PageRank (PPR)

● Extensive algorithmic literature on efficient
approximation methods (Andersen Chung and
Lang, 2007).

● Efficient MapReduce / Distributed algorithm
scaling to large graphs (billions of edges).

● Very good accuracy in our experimental
evaluation compared to other similarities
(Jaccard, Intersection, etc.).

PPR is fast

● Clustering (Andersen Chung and Lang, 2007, A Local Algorithm for Finding Well-Connected
Clusters Zhu et al. ICML’13) → Graph Clustering session

● Efficient GNN (PPRGo: GNNs at Scale KDD’20 Perozzi et al.) → Graph Neural Network
session.

● Efficient Graph Embeddings (VERSE: Versatile Graph Embeddings from Similarity Measures,
Tsitsulin et al. WWW’18)

● Spam & Abuse Detection (Robust PageRank and locally computable spam detection
features, Mirrokni, AirWeb08. Local Computation of PageRank Contributions Andersen et al.
WAW’07)

● Heterogenous graph ranking (Reduce and Aggregate: Similarity Ranking in
Multi-Categorical Bipartite Graphs, Epasto et al. WWW’14) → This talk

● Suggestions in social networks (Improved friend suggestion via Ego-net clustering, Epasto
et al. VLDB16) → This talk

Applications of PPR and Similarity
Ranking

Graph Mining | go/graph-mining | December 2019

Reduce and Aggregate: Similarity
Ranking in Multi-Categorical
Bipartite Graphs
Based on work by: Epasto, Feldman, Lattanzi, Leonardi and Mirrokni, WWW2014

http://go/graph-mining

Users

Heterogenous bipartite graph ranking

Items of different types

Given a subset of categories of
interest determine a similarity
ranking for the users.

We provide efficient distributed and
real-time algorithms for the problem.

Heterogenous bipartite graph ranking

We provide results for computing
rankings based on PPR, and other
2-hop similarities.

Recall

Pr
ec
is
io
n

Experiments on a AdWords
recommendation problem.

Graph Mining | go/graph-mining | December 2019

Improved friend suggestion via
Ego-net clustering
Based on work by: Epasto, Lattanzi, Mirrokni, Sebe, Taei, Verma VLDB’16

http://go/graph-mining

A problematic case for graph similarity

The ego node part of many community.

Ego

A
B

Improving Collaborative Filtering

We should really cluster the ego-networks

?

Should we suggest A to B as similar?

A

B

Ego-network score

Ego-network score

Ego-network score, e.g., # ego-net clusters two nodes belong to

Suppose we cluster all ego-networks.

Results: Ego-network score

Evaluation: ablation analysis,
where we remove some edges
and then we try to predict
them.

Live Experiments: 1.4% decrease in
live rejection rate (see paper)

Follow-up work: Persona Graph and Embeddings

Original Graph

Persona
Graph

node2vec

splitter

Epasto, Lattanzi, Leme - KDD’17.
Epasto Perozzi WWW’19 will be covered in the Graph Neural Learning Section.

Graph Mining | go/graph-mining | December 2019

Clustering at Scale
Vahab Mirrokni

Based on several papers, e.g.,

● Affinity Clustering: Hierarchical Clustering at Scale, Bateni, Behnezhad,
Hajiaghayi, Kiveris, Lattanzi, Mirrokni, NeurIPS’17

● Distributed Balanced Partitioning via Linear Embedding: Aydin, Bateni,
Mirrokni, WSDM’16

● Mapping Core-sets for Balanced Clustering, Bateni, Bhaskara, Lattanzi,
Mirrokni, NeurIPS’14.

● Optimal Distributed Submodualr Maximization via Sketching, Bateni,
Esfandiari, Mirrokni, KDD’18.
Applications in KDD’18, VLDB’19, NeurIPS’19

http://go/graph-mining

Clustering: Motivation
Clustering
Graph Mining is about pattern recognition. The

most basic pattern is ‘these nodes are alike,

group them together’. Clustering tools allow us

to identify such patterns in data. With a wide

array of clustering algorithms available, we have

a lot of fine grained control over how clusters

are created.

Many Applications, e.g.,
● Feature Engineering:

○ Clusters as features & input for ML models

● Preprocessing for other Graph-based Learning

○ ClusterGCN, ego-net clusters for GNNs

● Causal inference and Experimental Design

○ Minimize interference: Section 1

● Privacy and Anonymity

○ Min-size & anonymity clustering : Section 1

● Data Efficiency:

○ Diversified sampling: Coverage, K-means

● Many more applications in model efficiency,

Clustering: Many Algorithms and Techniques
● Hierarchical Clustering: Affinity, HAC, pHAC, ...

● Metric Clustering: K-means, DBScan, K-center, ...

● Clustering w/ constraints: Balanced, Min-Size, ...

● Community Detection: Modularity, Local Random

Walk, Ego-net and Correlation Clustering, ...

Big Challenge: Doing it at Scale!

Techniques: Random Walks, Sketching and Locally

Sensitive Hashing(LSH), Composable Core-sets, ...

Algorithms and Systems for Clustering

For each algorithm, we explore several
combinations of systems+algorithms. For
example, for connected components:

● MapReduce+DHT paper
● Flume via Local Contractions
● ASYMP paper
● Up to 50X speedup over baselines

→ Will discuss in the last section

https://drive.google.com/a/google.com/file/d/0B2gZilQk8MT5WDVOeDBRU0x1azg/view?usp=sharing
https://arxiv.org/abs/1807.10727
https://arxiv.org/abs/1712.09731

Hierarchical Clustering

A Clustering method that seeks to build a
hierarchy of clusters

Many sequential algorithms:
HAC, Single Linkage, Avg Linkage.

Parallel Hierarchical Clustering:
Affinity Clustering, Parallel HAC.

P 108

Parallel Linkage Clustering via use of MapReduce & Distributed Hash Tables (DHT)

● Keep heaviest edge above a threshold incident to each node
● Compute clusters and construct graph between clusters
● Iterate & Recluster

Affinity Hierarchical Clustering

.7

.5

.7

.9

Subroutine in many applications

Paper in NeuIPS’17: On Affinity Hierarchical
Clustering, bateni et al [Video]

● Theoretical study
● Applied to graphs with Trillions of edges
● Better quality compared to HAC, k-means...

0.61.0

.5

.3

.3

.3

https://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale
https://www.youtube.com/watch?v=1IOEFNGPNJc

Affinity Clustering: Empirical Study (Quality)

● Datasets are from the UCI database and we use Euclidean distance.

Affinity Clustering: Empirical Study (Scalability)

● The first three graphs in table 1 are based on public graphs and the last
graph is based on an internal corpus of public images found on the web
and their similarities.

Distributed Balanced Partitioning
via Linear Embedding and Affinity Clustering

Distributed Balanced Partitioning via Linear Embedding: Aydin, Bateni, Mirrokni, WSDM’16,

Balanced Partitioning Problem

● Balanced Partitioning:
o Given graph G(V, E) with edge weights
o Find k clusters of approximately the same size
o Minimize Cut, i.e., #intercluster edges

● NP-hard even to approximate.

● Goal: Solve at Scale

Outline of Algorithm

Three-stage Algorithm:
1. Initial Ordering: One-dimensional embedding

a. Space-filling curves
b. Hierarchical clustering

2. Semi-local moves
a. Min linear arrangement
b. Optimize by random swaps

3. Introduce imbalance
a. Dynamic programming
b. Linear boundary adjustment
c. Min-cut boundary optimization

G=(V,E)

0 1 2 4 5 6 7 8 9 10 113

Initial ordering

0 1 2 456 78 9 10113

Semi-local moves

0 1 2 456 78 9 10113

Imbalance

Step 1 - Initial Embedding

● Space-filling curves (Geo Graphs)

● Affinity Hierarchical clustering (General Graphs)

0 1 2 3 4 5 6 7 8 9

v
0

10 11

v1
v5

A
0

A
2

B
0

B1

C0

Datasets

● Social graphs
o Twitter: 41M nodes, 1.2B edges
o LiveJournal: 4.8M nodes, 42.9M edges
o Friendster: 65.6M nodes, 1.8B edges

● Geo graphs
o World graph > 1B edges
o Country graphs (filtered)

Comparison to Previous Work (LiveJournal)

k Spinner
(5%)

UB13
(5%)

Affinity
(0%)

Balanced Partition
(0%)

20 38% 37% 35.71% 27.5%

40 40% 43% 40.83% 33.71%

60 43% 46% 43.03% 36.65%

80 44% 47.5% 43.27% 38.65%

100 46% 49% 45.05% 41.53%

● Paper
○ Best balance and cut size

● Dataset
○ LiveJournal: 4.8M nodes, 42.9M edges

● Related work
○ Spinner (recent) arXiv, [Martella et al.]
○ UB13, WSDM’13 [Ugander & Backstorm]

■ Developed at Facebook
■ Balanced label propagation

https://research.google.com/pubs/pub44315.html

Comparison to Previous Work (Twitter Graph)

k Spinner
(5%)

Fennel
(10%)

Metis
(2-3%)

BalancedPart.
(0%)

2 15% 6.8% 11.98% 7.43%

4 31% 29% 24.39% 18.16%

8 49% 48% 35.96% 33.55%

o Twitter: 41M nodes, 1.2B edges

Examples of Applications of Balanced Partitioning at Google

● Serving in Google Maps Directions
o Serve the graph out of N serves.
o Minimize the # of multi-server source-destination pairs.

● Balanced partitioning for backend of Google Search (VLDB’19)
o Better caching properties result in -32% flash consumption
o Affinity-aware caching via balanced partitioning

● Facilitate A/B experiments under network interference (NeurIPS’19,
KDD’18)

o covered in the first section

Application: Cache-aware load balancing

● TARS = term-affinitized replica selection
● "Cache-aware load balancing of data center applications," by Archer, Aydin,

Bateni, Mirrokni, Schild, Yang, Zhuang (VLDB’19)

Balanced Graph Partition → TARS
voting table

cache-aware replica selection

http://go/tars-paper

Cache-aware load balancing via balanced partitioning

Graph cut cost predicts FBM cache miss rate

CPU

flash IO

Impact on Search Backend:

● -32.5% flash IO, -1.5% CPU cost

baseline DLB + TARSDLB only

Randomized Composable Core-sets

Machine 1

Machine 2

Machine m

Input Set Selected
Items

Output
Set

Random T1

Random T2

Random Tm

S1
S2

Sm

Run ALG on each machine

Run ALG’ on selected items to
find the final output set

Two rounds of Computation.

Send each edge to 1 machine or constant #machines at random.

Composable core-sets: Defined on a metric space.
1. Diversity Maximization,

○ PODS’14 by Indyk, Mahdian, Mahabadi, Mirrokni
○ for Feature Selection in AAAI’17 by Abbasi, Ghadiri, Mirrokni, Zadimoghaddam

2. Capacitated ℓp Clustering, NeuIPS’14 by BateniBhaskaraLattanziM. ← This Talk
Randomized composable core-sets: Beyond Metric Spaces.
3. Submodular Maximization, STOC’15 by M. Zadimoghaddam
4. Feature Selection (Column Subset Selection), ICML’16 by Alschulter et al.
5. Bipartite Matching, SODA’19 by Assadi et al.

Weighted Matching, by AssadiBateniMirrokni, ICML’2019
LSH-based composable core-sets:
6. Coverage Problems: by Bateni, Esfandiari, M., SPAA’17 + KDD’18
7. Extreme k-center via LSH-based partitioning, by Bateni, Esfandiari, Fischer, M.,

Composable Core-sets for Distributed Algorithms

Clustering: Divide data into groups containing “nearby” points

Minimize:
k-center :

k-means :

k-median :

Metric space (d, X)

α-approximation
algorithm: cost less than

α*OPT

Distributed Metric Clustering

Core-set Framework:
● Divide into chunks V1, V2,…, Vm

○ Random or using LSH
● Come up with “representatives”

Si on machine i with size << |Vi|.
● Solve on union of Si, others by

closest rep.

Balanced Clustering via Mapping Core--sets (Bateni,
Bhaskara, Lattanzi, Mirrokni, NeurIPS’14)

● Theoretical guarantee: 3 rounds, constant
approximation.

● Empirical study → next slide

Distributed Metric Clustering

Empirical Study
Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used k=1000, #machines = 200)

US graph: N = x0 Million
distances: geodesic

World graph: N = x00 Million
distances: geodesic

size of seq. inst. increase in OPT

US 1/300 1.52

World 1/1000 1.58

Select k nodes to cover the maximum number
of neighbors

Coverage maximization

Select k nodes to cover the maximum number
of neighbors

Coverage maximization

This extends
k-center clustering
for which we have
an edge between

every two point with
optimal distance

● Given: A family of subsets S1 … Sm
● Goal: choose k subsets S’1 … S’k with the

maximum union cardinality.

● Technique: Sketching + CoreSets
● Generate random numbers for items.
● Keep O~(n) edges with minimum hash

value but no more than O(n/k) per item.
○ Almost optimal approximation guarantees
○ Small sketches (0.01–3% of data) provide

good approx (96%).
○ Bateni, Esfandiari, M., SPAA’17 and KDD’18.

Coverage Maximization

0.1 0.25 0.4 0.6 0.85 0.9

Dynamic Distributed Clustering
We focused on batch/offline algorithms in this talk and this workshop, but

we should highlight the need for dynamic/online distributed clustering:

Online Hierarchical Agglomerative Clustering (OHAC)
● Goal: Maintain a hierarchy over a stream of points.

● Algorithm: When a new point arrives, run a split-merge

procedure on the existing hierarchy.

○ Split: break the hierarchy into a forest.

○ Merge: run HAC on the forest and the new point.
Menon, Rajagopalan, Sumengen, Citovsky, Cao, Kumar: Online Hierarchical

Clustering Approximations. Arxiv abs/1909.09667 (2019)

Next, we need to combine distributed, consistent, &
dynamic algorithms? Work in progress, e.g.,
Italiano, Lattanzi, Mirrokni, Parotsidis, Dynamic Algorithms for the Massively

Parallel Computation Model. SPAA’19

Fichtenberger, Lattanzi, Norouzi-Fard, Svensson: Consistent k-Clustering for

General Metrics, SODA’21.

yx
yx

Point x arrives Split

x

Merge

y

https://dblp.org/pid/160/5065.html
https://dblp.org/pid/64/3599.html
https://dblp.org/pid/156/1823.html
https://dblp.org/pid/152/6599.html
https://dblp.org/db/journals/corr/corr1909.html#abs-1909-09667
https://dblp.org/pid/m/VahabSMirrokni.html
https://dblp.org/db/conf/spaa/spaa2019.html#ItalianoLMP19
https://dblp.org/pid/125/2925.html
https://dblp.org/pid/11/6945.html

Conclusions: Summary of Algorithmic Techniques
● Clustering is one of the most popular tools in the library.

● Challenge: Scalability

● Techniques: Message Passing, Random Walks, Sketching and Locally Sensitive

Hashing(LSH), Composable Core-sets, ...

● Many variants, e.g., we didn’t cover overlapping clustering here. Related to

ego-Nets and also label propagation discussed later ...

● Many objectives: Next talk covers this in the context of community detection.

Further Reading
We focused on batch/offline clustering algorithms. Examples of recent papers

not covered:

Bressan, Cesa-Bianchi, Lattanzi, Paudice, Exact Recovery of Mangled Clusters with

Same-Cluster Queries, NeurIPS’20.

Heinrich Jiang, Jennifer Jang, Kuba Lacki, Faster DBSCAN via subsampled similarity

queries, NeurIPS’20.

Menon, Rajagopalan, Sumengen, Citovsky, Cao, Kumar: Online Hierarchical

Clustering Approximations. Arxiv’19.

Italiano, Lattanzi, Mirrokni, Parotsidis, Dynamic Algorithms for the Massively

Parallel Computation Model. SPAA 2019

Ghaffari, Lattanzi, Mitrovic: Improved Parallel Algorithms for Density-Based

Network Clustering. ICML’19.

Lattanzi, Sohler: A Better k-means++ Algorithm via Local Search. ICML’19

Monath, Dubey, Guruganesh, Zaheer, Ahmed, McCallum, Mergen, Najork, Terzihan,

Tjanaka, Wang, Wu: Scalable Bottom-Up Hierarchical Clustering, Arxiv’20.

Fichtenberger, Lattanzi, Norouzi-Fard, Svensson: Consistent k-Clustering for

General Metrics, SODA’21.

https://dblp.org/pid/160/5065.html
https://dblp.org/pid/64/3599.html
https://dblp.org/pid/156/1823.html
https://dblp.org/pid/152/6599.html
https://dblp.org/pid/m/VahabSMirrokni.html
https://dblp.org/db/conf/spaa/spaa2019.html#ItalianoLMP19
https://dblp.org/pid/33/5673.html
https://dblp.org/pid/133/7331.html
https://dblp.org/db/conf/icml/icml2019.html#GhaffariLM19
https://dblp.org/pid/47/2482.html
https://dblp.org/db/conf/icml/icml2019.html#LattanziS19
https://dblp.org/pid/10/7789.html
https://dblp.org/pid/153/2209.html
https://dblp.org/pid/49/2951.html
https://dblp.org/pid/m/AndrewMcCallum.html
https://dblp.org/pid/92/4487.html
https://dblp.org/pid/n/MarcNajork.html
https://dblp.org/pid/277/1359.html
https://dblp.org/pid/277/1380.html
https://dblp.org/pid/41/3241.html
https://dblp.org/pid/26/317.html
https://dblp.org/pid/125/2925.html
https://dblp.org/pid/11/6945.html

Mining and Learning with Graphs at Scale | NeurIPS’20

Jakub Łącki

Collaborators: Vahab Mirrokni, Christian Sohler

Community detection

Mining and Learning with Graphs at Scale | NeurIPS’20

Community detection

134

Method
Cluster graph

nodes into densely
connected subsets

Problem
Find communities
in a social network

Mining and Learning with Graphs at Scale | NeurIPS’20

Desirable properties

135

Output

Clusters ↔ ground truth
communities

Dense, sparsely connected clusters

Large number of small clusters

Algorithm

Scalable

Provable running time and
quality guarantees

Automatically detected number
of clusters

Mining and Learning with Graphs at Scale | NeurIPS’20

Quality metrics & algorithms

136

Metrics

Modularity
[NewmanG, PRE’04]

Conductance

Normalized cut
[ShiM, PAMI’00]

Density

Cut sparsity

Algorithms

Spectral
[ShiM, PAMI’00]

MCL
[EnrightDO, NAR’02]

Infomap
[RosvallB, PNAS’08]

Louvain
[BlondelGLL, JSTAT’08]

Leiden
[TraagVE, Nature’19]

Motif-based
[BensonGL, Science’16]

[TsourakakisPM, WWW’17]

Mining and Learning with Graphs at Scale | NeurIPS’20

Modularity
Finding and evaluating community structure in networks. Newman, Girvan, PRE 2004

137

● deg(x) = degree of node x
● C(x) = cluster of node x
● m = number of edges

● Modularity of a clustering:

Algorithm:
● Louvain method - greedy approach
● Very effective in practice, but little theoretical guarantees

Mining and Learning with Graphs at Scale | NeurIPS’20

Conductance and normalized cut

138

Conductance* of a cluster C:

number of edges leaving C
total degree of nodes in C

Total degree inside cluster = 3 + 2 + 3 + 2 = 10
Conductance = 2 / 10 = 0.2

Normalized cut of a clustering: sum of cluster conductances

φ(C) =

Mining and Learning with Graphs at Scale | NeurIPS’20

Coconductance - definition
Ł., Mirrokni, Sohler, ongoing work

139

● p > 0 - parameter (canonical setting is p = 1)
● Coconductance of a clustering:

Σcluster C (1-φ(C))p

p ⟶ 0

~maximum matching

p ⟶ ∞

~ connected components

Coconductance clustering
● Maximize total coconductance
● For p = 1, closely related to normalized cut

Mining and Learning with Graphs at Scale | NeurIPS’20

Coconductance - algorithms

140

Theoretical algorithm (p=1)
Constant approximation of the

optimal solution

Linear time

Practical algorithm
Adaptation of the
Louvain method

Good empirical
quality

Mining and Learning with Graphs at Scale | NeurIPS’20

Coconductance - empirical results

141
Datasets from SNAP, methodology from [TsourakisPM, WWW’17]

Mining and Learning with Graphs at Scale | NeurIPS’20

Coconductance - empirical results

142

Mining and Learning with Graphs at Scale | NeurIPS’20

Summary

143

● Active area of research

● Many existing algorithms / metrics
○ No “one-size-fits-all” solution

● New algorithm / metric: co-conductance

Mining and Learning with Graphs at Scale | NeurIPS’20

Label Propagation
Allan Heydon

Mining and Learning with Graphs at Scale | NeurIPS’20

Semi-Supervised Learning (SSL)

Different approaches based on the amount of labeled data:

145

Supervised
Learning

Semi-supervised
Learning

Unsupervised
Learning

All labeled Some labels (<< 10%) No labels

Mining and Learning with Graphs at Scale | NeurIPS’20

Similarity Graphs

● Goal: Learn labels for unlabeled instances using context.
● Leverage similarity relationships between instances!

○ “Similar instances should have similar learned labels.”
○ Graph can be based on natural relationships or computed from node features.

● Landmark paper:
○ Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions,

X. Zhu, Z. Ghahramani, J. Lafferty, Proc of ICML-2003, Aug, 2003.
○ Solved using matrix operations, which don't scale well.

● Idea: Iteratively propagate labels along graph edges.

146

http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Example - Data Instances

147

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Example - Add Similarity Graph Edges

148

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Example - Add "Seed" Labels

149

"9" (1.0)

"4" (1.0)

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Example - Iteration 1

150

"9" (1.0)

"4" (1.0)

"4" (0.9)

"9" (0.9)

"4" (0.9)

"4" (0.9)

"4" (0.9)

"9" (0.9)

"9" (0.9)

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Example - Iteration 2

151

"9" (1.0)

"4" (1.0)

"4" (0.9)

"9" (0.9)

"4" (0.9)

"4" (0.9)

"4" (0.9)

"9" (0.9)

"9" (0.9)

"4" (0.8)

"4" (0.8)

"4" (0.8)
"9" (0.8)

"9" (0.8)

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Example - Iteration 3

152

"9" (1.0)

"4" (1.0)

"4" (0.9)

"9" (0.9)

"4" (0.9)

"4" (0.9)

"4" (0.9)

"9" (0.9)

"9" (0.9)

"4" (0.8)

"4" (0.8)

"4" (0.6)
"9" (0.4)

"9" (0.6)
"4" (0.4)

"9" (0.8)

Mining and Learning with Graphs at Scale | NeurIPS’20

Label Propagation

Label Propagation API

153

● Input:
○ Similarity signal (weighted edges)
○ Training labels/weights ("seed" vertices)
○ Test labels/weights ("validation" vertices)

● Output:
○ Learned labels for most/all vertices.
○ Thresholding is typically applied to select "strong" learned labels.

Labeled Vertices
Learned Labels

Weighted Edges

Labeled
Vertices

Mining and Learning with Graphs at Scale | NeurIPS’20

SSL Applications

154

Generality of the framework permits a variety of applications:

● Spam and abuse detection (typically binary classification).
● Multi-class text and video classification.
● Identification of incorrect noisy labels to enable label cleaning.
● Natural language processing, e.g., sentiment and emotion detection,

improving recall by identifying synonymous phrases.
● Augmentation of label data for downstream model training.

Mining and Learning with Graphs at Scale | NeurIPS’20

System Properties

155

● General
○ Nodes can be of the same (homogeneous) type or of different (heterogeneous) types.
○ Graph edges can represent arbitrary similarity relationship(s) (with different types).
○ Node IDs and seed/validation labels are arbitrary strings.

● Flexible
○ Handles binary, multi-class, and multi-label problems.
○ Supports both positive and negative input label weights.
○ Pluggable vertex propagation algorithm/class (defaults to weighted average).
○ Can be used as part of a larger machine-learning pipeline.

● Scalable
○ Scales to XT edges, XXXB nodes, XXXM distinct labels.
○ Implemented as a massively parallel computation involving XK machines.
○ Optimization: keep the top K labels per node on each iteration.

Mining and Learning with Graphs at Scale | NeurIPS’20

Label Update Function

156

● Learn by propagating labels over the graph.
● Iterative algorithm attempts to minimize the following objective function [1]:

Labeled loss Neighbor loss Prior loss

Neighbor
penalty

Prior penaltySeed penalty
(1.0 for seeds)

Prior labelEdge weight
Seed

weight

Learned
weight

[1] "Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation", S. Ravi and Q. Diao,
Proceedings of AISTATS, May, 2016.

Mining and Learning with Graphs at Scale | NeurIPS’20

Learned Label Update Function [2]

Idea: Train a model to exploit node features.

● Label update function inputs:

○ Neighbor labels.

○ Node features (tensorflow.Example)

● Leverages the power of non-linear models:

tree-based models, DNNs.

● Model training:

○ Run LP to generate training data.

○ Train model on labeled (seed) nodes.

157

Model

Predicted Labels

Node Features
(tf.Example)

Nbr
Labels

Nbr
Labels

[2] "Collective Classification in Network Data", P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T.
Eliassi-Rad, AI Magazine, 29(3), Sept, 2008, pages 93-106, https://doi.org/10.1609%2Faimag.v29i3.2157.

https://doi.org/10.1609%2Faimag.v29i3.2157

Mining and Learning with Graphs at Scale | NeurIPS’20

Conclusions

Label propagation:

● Is a semi-supervised learning technique requiring << 10% of nodes to be
labeled

● Leverages a similarity graph to propagate labels between neighbors
● Scales to very large graphs and large label spaces and
● Can be applied to a wide variety of problem types.
● Is available publicly as a Google Cloud AI Workshop experiment.

Google AI Blog post: Graph-powered Machine Learning at Google

158

http://cloud/ai-workshop/experiments/semi-supervised-learning-with-graphs
https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html

Graph Neural
Networks

Bryan Perozzi, Amol Kapoor,
John Palowitch, Alessandro

Epasto

Graph Neural Networks and
Graph Embeddings

PPRGo: GNNs at Scale

Debiasing GNNs

Learning Multiple Embeddings

159

Graph Mining | go/graph-mining | December 2019

Graph Embeddings and Graph Neural
Networks
Bryan Perozzi

http://go/graph-mining

Section Overview

1. Graph Embeddings
2. Graph Convolutions
3. Challenges of GNNs

161

An embedding is a high dimensional float-vector

representation of information, often generated by

the inner layer of a deep neural network.

Embedding intuition: the information is the same,

the representation is different, e.g. rgb vs cmyk, or

encryption.

A graph embedding is simply a representation of

graph data. The high dimensional graph information

(structure/features) are mapped to a lower

dimensional space.

Graph Embedding

Graph Embedding
Initial work focused on using random walk
reconstruction for unsupervised representation
learning.

Emphasis on faithful encoding of source graph
& communities.

163DeepWalk: Online Learning of Social Representations
B Perozzi, R Al-Rfou, S Skiena (KDD’14)

Choose
Graph

Input

E.g: Random
Walk Transition
Matrix

Sample
Sequences
From Graph

Graph
Sampling

E.g: Truncated
Random Walks

Model
Sequences

Modeling

E.g:
Skipgram

Output

DeepWalk:
Node
Representations

DeepWalk Paradigm for Graph Representation Learning

Colors correspond
to Labels

Community
Structure
Preserved

Many extensions since

2. Hierarchical Structure

3. Graph Attention Models
Fixed Context Distribution

Learnable Context

v

u
k

k

1. Directed Graphs

164

Watch Your Step: Learning Node Embeddings
via Graph Attention

S Abu-El-Haija, B Perozzi, R Al-Rfou, AA Alemi (NeurIPS’18)

HARP: Hierarchical Representation Learning for
Networks

H Chen, B Perozzi, Y Hu, S Skiena (AAAI’18)

Learning Edge Representations via Low-Rank
Asymmetric Projections

S Abu-El-Haija, B Perozzi, R Al-Rfou (CIKM’17)

Graph as a Modality
Graph embeddings are the foundation of

using graphs as a data modality (like

images), because they allow us to store,

compare, and reason about information

coming from many domains.

We can even do this for graphs which have

complex, heterogeneous, structure.

Loss Function: Are
these connected?

Embeddings

GCNs

Graph Convolutional Networks are a way
to apply deep learning to local networks
within arbitrary graph structures.

Inspired by convnets: we want to
incorporate context!

But non-trivial to do scalably...Tensorflow
does not like dynamically shaped inputs :(

GCNs
Implementation: turn adjacency info into a matrix.

a

b

c

d
e

f
g

x
y

z

Graph (a patch of a graph)

Seed node

1-hop Neighborhood

2-hop Neighborhood

1.2 0.4 4.6 2.1 0.0 0.1 9.4 5.3

Features

A Graph Convolution

A Graph Convolution

A Graph Convolution

A Graph Convolution

label → Compute Loss

A Graph Convolution

1. learn to predict label
from featuresFeatures → Prediction

You can use this to label the existing
nodes of a graph.

Learn embeddings and classification
in one shot.

2. add predicted labels
on unlabeled nodes

A Graph Convolution

3. Extract
embeddings

178

The Graph Convolutional Network (GCN) Model

X W0

Node
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
…

Semi-Supervised Classification with Graph Convolutional Networks
Thomas N. Kipf, Max Welling (ICLR’17) 179

Generalizations of GCNs

180

Message Passing Neural Networks:

● MPNNs can naturally incorporate
heterogeneous vertices and edges.

● They provide arbitrary control of
when/how messages are passed.

Neural Message Passing for Quantum Chemistry
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl (ICML’17)

1.2 0.4 4.6 2.1 0.0 0.1 9.4 5.3

MPNN: Each node has a state (embedding)

181

MPNN: Initial states are fed into GCN

h0

182

Output of some NN

mv,w
0 = M(hv,hw)

MPNN: Messages are generated for each edge

v

wOutput of some NN

183

m

MPNN: States are updated by “message passing”

h1 = H(h0, ∑ m0)

Output of some NN

(Max, Sum, Attention,...)

184

m

m

m

m

m

MPNN: ... and updated ...

ht+1 = H(ht, ∑ mt)

185

m

m

m

m

m

MPNN: ... and updated.

hT = H(hT -1, ∑ mT-1)

186

m

m

m

m

m

MPNN: Final states are “read-out”

ht

Input for some NN

187

There’s a lot more!

188

Machine Learning on Graphs: A Model and Comprehensive Taxonomy
I Chami, S Abu-El-Haija, B Perozzi, C Ré, K Murphy (preprint)

Increased interest in the area has led to an
explosion of models for all kinds of graph data.

Thankfully many models share common
elements, such as an encoder/decoder
paradigm:

The GraphEDM model.

Challenges of Graph Neural Networks

189

Representation Complexity
Unfortunately GCN’s aren’t perfect. Let’s
recap how they work real quick:

1) Start with a graph where each node
has some features;

2) Aggregate the one-hop
neighborhood of each node to
create a context-embedding;

3) Repeat step 2 until you reach the
desired neighborhood size;

4) Convert the final embedding into a
label.

Representation Complexity
Unfortunately GCN’s aren’t perfect. Let’s
recap how they work real quick:

1) Start with a graph where each node
has some features;

2) Aggregate the one-hop
neighborhood of each node to
create a context-embedding;

3) Repeat step 2 until you reach the
desired neighborhood size.

4) Convert the final embedding into a
label.

Oversmoothing & GCNs
Kipf and Welling (ICLR’17) demonstrate that adding
layers after the 2nd one is a waste of time and
compute. In theory, a GCN can learn from an
arbitrary deep network. In practice, this will never
happen.

Oversmoothing & GCNs
Kipf and Welling (ICLR’17) demonstrate that adding
layers after the 2nd one is a waste of time and
compute. In theory, a GCN can learn from an
arbitrary deep network. In practice, this will never
happen.

Why does this happen? Information in a GCN
architecture is aggregated at each layer. This has
two impacts:

1) Nearby neighbors are used more frequently,
resulting in an extremely strong proximity
bias.

2) The model can only learn aggregations
between hops. Nothing else.

Where GCNs Fail
We can envision an obvious failure mode of GCNs:
when a node has the opposite labels as its
neighbors.

On such a prediction task, the GCN -- which is
capable of learning only aggregations of nearby
neighbors -- would predict the exact opposite of
what we want.

A traditional GCN layer can only ‘view’ one
neighborhood hop at a time. Imagine if you could
never have a convolution filter larger than 3x3!

Blue

What color is the
central node?

White

195

N-GCN: Mixture of Experts
First take: Capture local and global information
from a family of GCNs trained on increasingly
dense graphs.

Embeddings from the ensemble of networks is
combined into a single classification verdict.

Creates rich representations in principle, but
models are large (and therefore slow).

N-GCN Architecture

Different input
graph for each
network

N-GCN: Multi-scale graph convolution for semi-supervised node classification
 S Abu-El-Haija, A Kapoor, B Perozzi, J Lee (UAI’19)

MixHop: Expanding our Contextual Horizons

Better answer: expand the filter size!
I.e., pushing multi-scale into the filter itself.
For each layer in MixHop, we use a 0, 1, 2,
...N hop neighborhood, and allow the layer
to learn to aggregate across all of these
hops simultaneously.

Mixhop: Higher-order Graph Convolution Architectures via Sparsified
Neighborhood Mixing

S Abu-El-Haija, B Perozzi, A Kapoor, H Harutyunyan, N Alipourfard, K Lerman, G Ver Steeg, A Galstyan (ICML’19)

MixHop: Expanding our Contextual Horizons

Better answer: expand the filter size!
I.e., pushing multi-scale into the filter itself.
For each layer in MixHop, we use a 0, 1, 2,
...N hop neighborhood, and allow the layer
to learn to aggregate across all of these
hops simultaneously.

This is a massive qualitative improvement.
The MixHop model can learn difference
functions across layers, which (in image
terms) are equivalent to edge detectors.
When stacked with other MixHop layers,
we can build up native hierarchical graph
representations.

MixHop. Abu-el-Haija et al. ICML’19.

More Challenges of Graph Learning
In the following sections, we’ll cover additional
solutions we’ve developed to a number of
practical challenges of using GNNs:

● How can we make GCNs fast?

● What biases might a GNN contain?

● How can we model complex interactions?

198

Understanding nodes
which have multiple

communities

Quantifying bias in
Graph

Embeddings

Speeding up
Graph

Convolutions

Citations
PAPERS:
DeepWalk: Online Learning of Social Representations
B Perozzi, R Al-Rfou, S Skiena (KDD’14)

Learning Edge Representations via Low-Rank Asymmetric Projections
S Abu-El-Haija, B Perozzi, R Al-Rfou (CIKM’17)

HARP: Hierarchical Representation Learning for Networks
H Chen, B Perozzi, Y Hu, S Skiena (AAAI’18)

Watch Your Step: Learning Node Embeddings via Graph Attention
S Abu-El-Haija, B Perozzi, R Al-Rfou, AA Alemi (NeurIPS’18)

Semi-Supervised Classification with Graph Convolutional Networks
Thomas N. Kipf, Max Welling (ICLR’17)

Neural Message Passing for Quantum Chemistry
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl (ICML’17)

Machine Learning on Graphs: A Model and Comprehensive Taxonomy
I Chami, S Abu-El-Haija, B Perozzi, C Ré, K Murphy (preprint)

N-GCN: Multi-scale graph convolution for semi-supervised node classification
 S Abu-El-Haija, A Kapoor, B Perozzi, J Lee (UAI’19)

Mixhop: Higher-order graph convolution architectures via sparsified neighborhood mixing
S Abu-El-Haija, B Perozzi, A Kapoor, H Harutyunyan, N Alipourfard, K Lerman, G Ver Steeg, A Galstyan (ICML’19)

ICONS:

account: https://thenounproject.com/search/?q=account&i=1931153
publisher: https://thenounproject.com/search/?q=publisher&i=3048742
advertise: https://thenounproject.com/search/?q=advertiser&i=2374780

https://thenounproject.com/search/?q=account&i=1931153
https://thenounproject.com/search/?q=publisher&i=3048742
https://thenounproject.com/search/?q=advertiser&i=2374780

Graph Neural
Networks

John Palowitch, Bryan Perozzi

Google Research

Debiasing GNNs

Embeddings and embedding layers in GNNs

P 202

G = (V, E) G = (V)
Vector Space

embed

Good for visualization, denoising, and scalable ML

P 203

Many graphs cluster by attributes:

● gender, age, income, etc
● content embedding
● spatial properties

Problem: how do we learn embeddings
unbiased by sensitive metadata?

Metadata and graph embeddings

P 204

Many graphs cluster by attributes:

● gender, age, income, etc
● content embedding
● spatial properties

Problem: how do we learn embeddings
unbiased by sensitive metadata?

Related work:
● Adversarial Debiasing (Bose and

Hamilton 2019): train adversary to predict
metadata, backpropagate inverse loss.

● FairWalk (Rahman et al 2019): make
random walks conditionally independent
of metadata.

Metadata and graph embeddings

P 205

Many graphs cluster by attributes:

● gender, age, income, etc
● content embedding
● spatial properties

Problem: how do we learn embeddings
unbiased by sensitive metadata?

Our two-part solution:

1. Learn metadata embeddings
2. Orthogonalize topology and metadata

Metadata and graph embeddings

Learn Metadata Embeddings

P 206

1. Feed random walks through encoder:
○ topology embeddings U,V

2. Feed metadata through NN:
○ metadata embeddings X, Y

3. Full graph representations:

[U, X] [V, Y]

Hypothesis: Metadata embeddings X, Y
encode metadata signal, debiasing U, V

Result: some debiasing occurs, but not all.

Learn Metadata Embeddings

P 207

Political Blog (“polblogs”) graph:

➔ Nodes are political blogs
➔ Edges are hyperlinks from 2004
➔ 2 clearly-defined polar clusters

Metadata Leakage:

Theorem: Under a random gradient descent
update from the GloVemeta model,

GloVe

metadata leakage: 6598.0 ± 200.1
F1: 95.94% ± 0.07%

Topology embedding PCA. Color = political affiliation.

GloVemeta

metadata leakage: 1827.6 ± 289.7
F1: 88.33% ± 0.60%

Learn Metadata Embeddings

P 208

1. Feed random walks through encoder:
○ topology embeddings U,V

2. Feed metadata through NN:
○ metadata embeddings X, Y

MONET: Orthogonalize Metadata and Graph Embeddings

P 209

1. Feed random walks through encoder:
○ topology embeddings U,V

2. Feed metadata through NN:
○ metadata embeddings X, Y

3. MONET: Project U, V on
metadata-orthogonal hyperplane

4. Full graph representations:

[PZU, X] [PZV, Y]

Result: exact linear debiasing

MONET: Orthogonalize Metadata and Graph Embeddings

P 210

Relaxation:

𝛌∈[0, 1]

MONET: Orthogonalize Metadata and Graph Embeddings

P 211

MONETGloVe

metadata leakage: 0.018 ± 0.002
F1: 49.30% ± 0.60%

GloVe

metadata leakage: 6598.0 ± 200.1
F1: 95.94% ± 0.07%

GloVemeta

metadata leakage: 1827.6 ± 289.7
F1: 88.33% ± 0.60%

Experiment 1: MONET debiases blog political affiliation

P 212

Key Result: MONET-debiased embeddings consistent
with random baseline.

Linear classifier prevented from predicting affiliation.

Debiasing baselines:
● Adversarial (Bose & Hamilton 2019)
● FairWalk
● GloVemeta

Standard baselines:
● DeepWalk
● GloVe

Experiment:
1. Embed the graph
2. Train linear classifier on blog affiliation
3. Compute accuracy (higher = more bias)

Experiment 2: MONET debiases shilling attack

P 213

Experiment:

1. Simulate spam attack on MovieLens graph
○ on 10 randomly-chosen videos

2. Fold into video-video graph & embed
○ video metadata = # known spam hits

3. Metrics:
○ # of attacked videos in 20-nn of other

attacked videos
----> Measures bias

○ Embedding Distance MRR to top
random walk neighbors

----> Measures signal corruption

Key Result: MONET provides tunable debiasing with
bias-accuracy trade-off.

Exact debiasing still results in 8x gain over random.

Comparison to related work

P 214

● MONET only provides linear
debiasing. However, unlike other
methods, it guarantees debiasing with
a scalable training-time operation.

● Downside of FairWalk: Nodes with
neighbors of only one metadata class
will not be debiased.

● Adversarial debiasing can handle
non-linear bias in theory, but in
practice can fail to do so.

Thank you!

P 215

Future work:

● Non-linear debiasing

● High-dimensional metadata

● Deep GNNs

Palowitch, John; Perozzi, Bryan; “MONET: Debiasing Graph Embeddings via the Metadata-Orthogonal
Training Unit” to appear at ASONAM 2020 (arxiv:1909.11793)

https://arxiv.org/abs/1909.11793

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo: GNNs at Scale
Amol Kapoor

Mining and Learning with Graphs at Scale | NeurIPS’20

Scaling Graph Neural Networks with
Approximate PageRank

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, Stephan Günnemann

KDD’20.

https://arxiv.org/abs/2007.01570

https://arxiv.org/abs/2007.01570

Mining and Learning with Graphs at Scale | NeurIPS’20

Background

Mining and Learning with Graphs at Scale | NeurIPS’20

GCNs: A Quick Recap

Graph Convolutional Networks are a
way of incorporating graph context into
the embeddings of a specific node.
Using stacked GCN layers, we can build
up a hierarchical representation of a
graph.

Because each part of the graph
convolution is learned, we can utilize
node neighborhoods to make smarter
decisions in a wide range of tasks.
GCNs are therefore an extremely
powerful and flexible part of the Graph
Mining toolbox.

1. learn to predict label
from features

2. add predicted labels
on unlabeled nodes

3. Extract
embeddings

Mining and Learning with Graphs at Scale | NeurIPS’20

Scaling GCNs

Traditional GCNs operate by converting
the adjacency of a graph into a (sparse)
matrix, and using that adjacency matrix as
a gather operation to select and average
one-hop neighborhoods.

This approach rapidly runs into memory
issues as the size of the graph increases.

To scale to million/billion node graphs, we
can sample patches of the graph
(subgraphs) and train on those.

But this still poses some key challenges.

Mining and Learning with Graphs at Scale | NeurIPS’20

Where GCNs Fail: Recursion

Traditional GCNs are expensive because
they rely on recursive message passing.

To calculate the embedding of a node, I
need to get the embeddings of its
neighbors...and its neighbors
neighbors...and its neighbors neighbors
neighbors...

This is sloooooooooow! If a node’s first
hop has 64 neighbors, and each of THOSE
nodes has another 64 neighbors, you’re
doing 4096 IO lookups to calculate a single
node.

Num Hops: 0

IO Lookups: 1

Num Hops: 1

IO Lookups: 5

Num Hops: 2

IO Lookups: 17

Mining and Learning with Graphs at Scale | NeurIPS’20

Where GCNs Fail: Neighborhood Heuristics

Graph Convolutional Networks also bake
in the assumption that all neighboring
nodes are useful for the final computation.

In practice, this isn’t true. Only a few
neighboring nodes end up actually being
important.

GCNs are effective in part because they
are scattershot -- by training over all of the
neighboring nodes, the GCN will pick up
the important nodes by default. But this
isn’t scalable, especially in real world
graphs where celebrity nodes can have
thousands of neighbors.

Mining and Learning with Graphs at Scale | NeurIPS’20

Finding PPRGo

Mining and Learning with Graphs at Scale | NeurIPS’20

Key Insights

Whatever aggregation mechanism
we use should weight nodes by
importance. In other words, we
don’t want to blindly aggregate our
node neighborhoods by doing, say,
an average.

Calculating aggregations at
runtime is slow, but there may be
mechanisms for separating the
aggregation beforehand. If we can
pre-calculate aggregations offline,
we can save a lot of runtime.

Mining and Learning with Graphs at Scale | NeurIPS’20

(Approximate) Personalized Page Rank

A quick review of personalized page rank:
for every node, we calculate the stationary
distribution of a random walk with some
teleport probability.

This gives us a weight vector of the node’s
neighborhood. Nodes that appear
frequently in the random walk are
weighted higher than nodes that rarely
appear.

Intuition: for a large random walk size, this
is akin to an ‘infinite hop’ attention vector.

Mining and Learning with Graphs at Scale | NeurIPS’20

ACL and Power Iteration

We can calculate PPR in a highly scalable,
distributed way (using ACL’s algorithm).
And we can do it offline, separated from
actual model training.

During inference, we only need the PPR
vector once so it’s more efficient to fall
back to Power Iteration. Power Iteration
approach works well for large graphs with
sparse adjacencies. Though expensive to
calculate many times, during inference
we only need N = 1 - 3.

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo: Gotta Go Fast

We have the pieces necessary to create PPRGo.

- First, we calculate PPR vectors offline at scale;
- Then, we train a simple MLP model that ingests

the node features and outputs logits;
- We aggregate those logits using the ‘attention’

weights of the top K nodes in the PPR vector,
and use the aggregation to calculate a loss;

- At inference we use Power Iteration with ~2-3
iterations to calculate an approximated PPR
vector;

- The approximated PPR is fed into the model
with node features to produce a final
prediction.

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo aggregates the most

important nodes in the N hop

neighborhood using only 1 hop of

computation.

Mining and Learning with Graphs at Scale | NeurIPS’20

Results

Mining and Learning with Graphs at Scale | NeurIPS’20

Experimental Setup

We train PPRGo and our baselines on several
sparsely labeled semi-supervised node
classification tasks.

For each dataset, we measure runtime as a
sum of preprocessing, training, and
inference. We also measure memory usage
and, of course, accuracy.

Want to answer two questions:

- What is the tradeoff between accuracy
and scalability?

- What is the resource consumption of
PPRGo compared to other methods?

Name CORA PubMed Reddit MAG

Num Nodes 18.7K 19.7k 233K 12.4M

Num Edges 62.4K 44.3k 11.6M 173M

Num
Features

8.7K 0.6k 602 2.8M

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo: Academic Dataset Analysis

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo: In Depth Runtime Analysis on Reddit

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo: MAG

PPRGo works best on real world graphs. Most
academic graphs are tiny -- a few hundred
thousand nodes is hardly a reasonable
comparison point.

We created a novel dataset, the MAG Scholar
Citation Dataset. With 12M nodes and 173M
edges, we start getting close to Google scale.

PPRGo finishes training on this dataset in < 2
minutes. It’s the only method that actually
finishes.

Mining and Learning with Graphs at Scale | NeurIPS’20
234

PPRGo: Distributed MAG -- TradeOffs

Runtime: 6min

Runtime: 12min

Mining and Learning with Graphs at Scale | NeurIPS’20
235

PPRGo: Distributed MAG -- Efficiency

Mining and Learning with Graphs at Scale | NeurIPS’20

Conclusions

Mining and Learning with Graphs at Scale | NeurIPS’20

Graph Convolutional Networks are

powerful because they let us

incorporate node neighborhoods, but

they do so in an expensive,

scattershot way.

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo gives us the benefit of large

neighborhood learning with the speed

of a single hop GNN in a trivially

distributable manner.

Mining and Learning with Graphs at Scale | NeurIPS’20

PPRGo can operate on actual large

scale graphs, including Google scale

graphs. It was the only learning tool

that successfully completed the MAG

dataset, the largest public academic

graph that we are aware of to date.

Mining and Learning with Graphs at Scale | NeurIPS’20

Citations
Based on Work By:

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek

Rózemberczki, Michal Lukasik, Stephan Günnemann. Scaling Graph Neural Networks with

Approximate PageRank. KDD’20. https://arxiv.org/abs/2007.01570

Reid Andersen, Fan Chung, Kevin Lang. Local Graph Partitioning using PageRank Vectors.

http://www.leonidzhukov.net/hse/2015/networks/papers/andersen06localgraph.pdf

ICONS:

Mind: https://thenounproject.com/search/?q=deep+learning+graph&i=1705433

OTHER:

CC3.0: https://creativecommons.org/licenses/by/3.0/us/legalcode

CC2.5: https://creativecommons.org/licenses/by-nc/2.5/

https://arxiv.org/abs/2007.01570
http://www.leonidzhukov.net/hse/2015/networks/papers/andersen06localgraph.pdf
https://thenounproject.com/search/?q=deep+learning+graph&i=1705433
https://creativecommons.org/licenses/by/3.0/us/legalcode
https://creativecommons.org/licenses/by-nc/2.5/

Mining and Learning with Graphs at Scale | NeurIPS’20

Learning Multiple Embeddings
Alessandro Epasto

Based on: Epasto, Perozzi. “Is a Single Embedding Enough? Learning Node
Representations that Capture Multiple Social Contexts” WWW 2019

Mining and Learning with Graphs at Scale | NeurIPS’20

Node Embeddings -- Why do we need them?

Graphs contain discrete information (nodes, edges).
● Most modern Machine Learning (ML) techniques operate on continuous inputs.

● Graph Embeddings are continuous representation of graphs.

● Useful for various problems, including:

○ Node Classification

○ Edge Classification

○ Link Prediction

Mining and Learning with Graphs at Scale | NeurIPS’20

Review: Node Embedding via Random Walks

[2] Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014

Deepwalk [2]: simulate random walks then encode them with
neural network.

Random Walk
v3 → v5 → v9 → v11 → v5 → ...
…
...

Random Walk Sequences

Neural network

Embeddings Y

v1 v2

v3 v5

v4

v6
v11

v9

.v1

.v11 .v6

.v2

.v3 .v4

.v5

.v9

 x

 y

Mining and Learning with Graphs at Scale | NeurIPS’20

Is a single embedding enough?

In Natural Language Processing there are disadvantages to
using a single embedding to represent a word.

Main observation: Graphs have this problem too!

In a social network, nodes belong to multiple overlapping communities

“Lets sit by the bank”

A financial institution?

A river side?

Mining and Learning with Graphs at Scale | NeurIPS’20

Real world graphs

245

Communities overlap heavily.

More connections with
outside than with inside

Large cut

Random walks will cross the community boundaries very often. Each node has many
roles and belongs to many communities that the random walk will explore partially.

Mining and Learning with Graphs at Scale | NeurIPS’20

Cluster Locally, Embed Globally

Solution: Community structure is more clear at the
microscopic level of node-centric structures called
ego-networks. Analyzing the ego-nets allows to disentangle the
communities.

Mining and Learning with Graphs at Scale | NeurIPS’20

Ego Networks

Ego-net (Minus Ego) of

The Ego-net (minus Ego) of node u, is defined as the induced subgraph on {N(u)}.

Mining and Learning with Graphs at Scale | NeurIPS’20

Intuition

Intuition: while communities overlap, usually there is
a single context in which two neighbors interact.

Family

Work

Mining and Learning with Graphs at Scale | NeurIPS’20

Persona Graph

The persona graph, a novel graph concept based on ego-net
analysis with applications in overlapping graph clustering, graph
embeddings and more.

• Highly flexible, allows use of any non-overlapping
algorithm

• Scalable (tens of billions of nodes and edges)

• Provable theoretical guarantees for graph clustering

Mining and Learning with Graphs at Scale | NeurIPS’20

Persona Graph Intuition

Intuition: the red node is actually two nodes which we call the
persona nodes of the node.

Family

Work

Mining and Learning with Graphs at Scale | NeurIPS’20

Persona Graph

We create a Persona Graph where these two nodes are separated and we
split the edges of the original node among the persona nodes.

Family

Work

Family Work

Mining and Learning with Graphs at Scale | NeurIPS’20

The Splitter Framework Overview

More formally the persona graph proceeds in the following steps:

1. Create the ego-net of each node

2. Partition each ego-net with any non-overlapping clustering algorithm

3. Create the persona graph

4. Analyze the persona graph (e.g. embed the nodes)

5. Map the results of the persona graph to the original graph

Mining and Learning with Graphs at Scale | NeurIPS’20

Splitter Embedding Method

Ego-Net Analysis Persona Graph

.U1

.C .D

.A1

.A3 .B
.U2

.A2

 x

 y

Splitter Embedding

.U
.C .D

.A
.B

 x

 y

Normal Embedding

Regularization

Mining and Learning with Graphs at Scale | NeurIPS’20

Splitter Embeddings

Original Graph

Persona Graph

node2vec

splitter

Mining and Learning with Graphs at Scale | NeurIPS’20

Link Prediction Results

We use the simple max aggregation of dot products for
link prediction using persona embeddings.

Mining and Learning with Graphs at Scale | NeurIPS’20

Visualization: Co-Authorship Graphs

node2vec splitter

One representation
for prolific author

inside of “Data
Mining” cluster.

Many
representations,

scattered between
Data Mining and IR

Mining and Learning with Graphs at Scale | NeurIPS’20

1. How do the multiple meanings relate to each other?

2. How can we use them in different tasks?

a. Link prediction

b. Node classification → ???

Conclusions and future questions

Mining and Learning with Graphs at Scale | NeurIPS’20

Algorithms,
systems and

scalability

Martin Blais, Jakub Łącki

Graph Neural Networks in
Tensorflow

Graph algorithms in the
distributed setting

Multi-core parallel graph
clustering

258

Mining and Learning with Graphs at Scale | NeurIPS’20

Graph Neural Networks in TensorFlow
(a.k.a. “Graph Tensor”)
Martin Blais (blais@google.com)

Mining and Learning with Graphs at Scale | NeurIPS’20

Motivation

Common infrastructure for building GNNs on TensorFlow.

Why?
● Consulting with many internal teams within the company working with

GNNs, we realized that a significant portion of development time was
spent on data representation.

● After our second system, we realized the right shape that the third
version should have (and this is it).

260

Mining and Learning with Graphs at Scale | NeurIPS’20

Goal

“Build the ultimate toolkit for building and training
GNN models on very large graphs on top of TensorFlow.”

● Supports many model types, graph types, arbitrary feature shapes
● Scalable and distributed by default
● Handles irregular representation, sampling and I/O out of the box
● Integrates well with TensorFlow

This is a preview; we’re working on an open source release

261

http://tensorflow.org

Mining and Learning with Graphs at Scale | NeurIPS’20
262

Supervised models

Classification from surrounding
neighborhood features

Semi-supervised models

Learn from propagating labels
from the neighborhood

Unsupervised models

Train node-level embeddings to
describe the structural role of the

data (e.g. DGI)

Types of Models

Mining and Learning with Graphs at Scale | NeurIPS’20
263

Homogeneous models

One type of node

One type of edge

Heterogeneous models

Multiple types of nodes

Multiple types of edges

Directed or undirected

Types of Graphs

Mining and Learning with Graphs at Scale | NeurIPS’20
264

Features can attached to

● Node sets
● Edge sets
● Graph

(Multiple features per set)

Arbitrary shapes
● scalar
● dense
● ragged

Types of Features

scalar features
e.g. edge weights

features with rank > 1
e.g. embeddings

variable-shaped features
e.g. sentences of words

graphs

nodes/edges

graphs

nodes/edges

ra
gged dim

ensio
ngraphs

nodes/edges

dense
 dim

ensio
n

● Provides RaggedTensors
● Labels are just features
● Supports latent nodes with no

features

Mining and Learning with Graphs at Scale | NeurIPS’20
265

Graph Schema
node_sets {
 key: "user"
 value {
 description: "An end user who watches videos."

 features {
 key: "account_age"
 value: {
 description: "The number of days since account was created."
 dtype: DT_INT64
 }
 }
 }
}

node_sets {
 key: "video"
 value {
 description: "Unique video content."

 features {
 key: "title"
 value: {
 description: "The title of the video (bag of words)."
 dtype: DT_STRING
 shape { dim { size: -1 } }
 }
 }
 features {
 key: "days_since_upload"
 value: {
 description: "The number of days since upload."
 dtype: DT_INT64
 }
 }
 }
}

edge_sets {
 key: "watches"
 value {
 description: "Watches of videos by users."
 source: "user"
 target: "video"
 }
}

edge_sets {
 key: "co-watch"
 value {
 description: "Co-watch similarity graph between users."
 source: "user"
 target: "user"

 features {
 key: "similarity"
 value: {
 description: "The Jaccard similarity of the video sets between users."
 dtype: DT_FLOAT
 }
 }
 }
}

context {
 features {
 key: "label_class"
 value: {
 description: "A label, ground truth."
 dtype: DT_STRING
 }
 }
}

nodes edges

graph
feature
declarations

source/target

Mining and Learning with Graphs at Scale | NeurIPS’20
266

Library Overview

Graph Sampler sampled
subgraphs

Training data:
sampled subgraphs
with node & edge

features

(TFRecords of tf.Example)

graph sampling &
data preparation

tools

tf.Example
parser

nodes

edges

context

“Graph” data structure
(with tf.RaggedTensor)

feature
encoding &

model

graph
operations

model training binary
Graph

Schema

stats tool

Mining and Learning with Graphs at Scale | NeurIPS’20
267

Scalability via Subgraphs on Receptive Field

Mining and Learning with Graphs at Scale | NeurIPS’20
268

Distributed Training

PS PS PS PS

WorkerChief Worker Worker Worker Worker Worker Worker Worker

sharded
files of

sampled
subgraphs

shared
model

parameters

model
checkpoint

model
checkpoint

model
checkpoint

model
checkpoint

model
checkpoint

Mining and Learning with Graphs at Scale | NeurIPS’20

Training Data Preparation: Graph Sampling

Two common scenarios:
1. A graph is provided

a. Apply region growing algorithm sampling over edges to produce subgraphs.

2. There is no graph;
a. Sample references between entities from relational tables (i.e., a database).

This is very common in building heterogeneous models.
b. Build a graph (see GRALE paper), then → Process using graph sampler → (1).

External tools:
● Small graphs that fit in-memory: Conversion from NetworkX
● Scalable sampler using Apache Beam (runs on Cloud Dataflow / Spark)
● Custom converters for public datasets, e.g. OGB → research
● A builder API to implement your own encoders

269

https://arxiv.org/pdf/2007.12002
https://networkx.org/
https://ogb.stanford.edu/

Mining and Learning with Graphs at Scale | NeurIPS’20

Utility Library Functions

● Extract sparse adjacency matrix
● Insert self-edges
● Convert to undirected
● Mask out some nodes, mask out some edges
● Extract seed node mask
● Simple convolution (gather + segment reduction (e.g, max, sum))
● Insert self-attention layers

… and more

270

Mining and Learning with Graphs at Scale | NeurIPS’20

Integrations

The TF GNN library is agnostic to model API; integrates with

● DeepMind GraphNets: Consume graph tensors → adapt to GraphsTuple
● Google Neural Structured Learning (with GraphNets)
● TF GNN API (own API) — Based on MPNN paper [Gilmer 2017]

The “Graph” container object is a TF Extension Type (a composite tensor):

● It can be passed around Keras layers.
● It supports batching, unbatching/flattening and serialization and tf.data.
● Supports custom hardware (TPUs)

271

https://github.com/deepmind/graph_nets
https://www.tensorflow.org/neural_structured_learning
https://arxiv.org/pdf/1704.01212.pdf

Mining and Learning with Graphs at Scale | NeurIPS’20

Graph algorithms
in the distributed setting
Jakub Łącki

Based on joint work with Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari,
Vahab Mirrokni, Warren Schudy, and Michał Włodarczyk

Mining and Learning with Graphs at Scale | NeurIPS’20

Graphs are big

Hyperlink2012

200B edges

273

Human brain

>100T connections

Web graph
Google (2018)

6.5T edges

How to mine graphs with billions / trillions of edges?

Image: https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png

Mining and Learning with Graphs at Scale | NeurIPS’20

Two approaches to processing large graphs

Multi-core parallel

1 machine
100s logical CPUs

~1TB RAM

274

Distributed

up to ~10k machines
up to ~10k CPUs

many terabytes of RAM

This talk Next talk

Mining and Learning with Graphs at Scale | NeurIPS’20

Agenda

275

Challenges & techniques

Example: connected
components

Extended models
of computation

Introduction

Mining and Learning with Graphs at Scale | NeurIPS’20

Running in a shared datacenter

276

Goals:
● Speed & scalability
● High reliability
● Low cost

Use whatever capacity the top tier
jobs don’t use:
● Very common failures due to

preemptions
● All data must be saved to disk
● Lower resource cost

Borg: the Next Generation. Tirmazi, Barker, Deng, Haque, Qin
Hand, Harchol-Balter, Wilkes, EuroSys'20.

Mining and Learning with Graphs at Scale | NeurIPS’20

Challenges of big graphs - data skew

Cluster sizes in a web graph (8.5B nodes, 700B edges)

Mining and Learning with Graphs at Scale | NeurIPS’20

● Many popular frameworks

○ MapReduce / Hadoop
[DeanG, OSDI’04]

○ Pregel / Giraph
[MalewiczABDHLC, SIGMOD’10]

○ Beam / Flume / Cloud Dataflow
[AkidauBCC+, VLDB’15]

○ ...

● High-level abstraction over distributed setting

● Fault tolerance

○ Computation (mostly) in synchronous rounds

○ Different checkpointing strategies

● All provide a very similar model of computation

278

Distributed computation frameworks

Mining and Learning with Graphs at Scale | NeurIPS’20

Distributed computation in practice

279

= machine

● Computation in synchronous rounds

● In each round, a machine:

1. Receives messages from
previous rounds

2. Performs arbitrary computation
3. Sends messages to other

machines
● All communicated data saved to

persistent storage (fault tolerance) = communication

INPUT

}

= synchronization

R
O

U
N

D

Mining and Learning with Graphs at Scale | NeurIPS’20

Distributed computation - desirable features

Running time
Low number of rounds

(ideally O(1) or O(log n))

Each machine takes

near-linear time in the

input size

Load balancing
No machine is

overloaded

Communication
Linear communication per

round

Communication balanced

among machines

Mining and Learning with Graphs at Scale | NeurIPS’20

MPC model
A Model of Computation for MapReduce. KarloffSV, SODA’10

281

= machine = communication

● MPC = Massively Parallel Computation

● Input of size N

● M machines with space S

● N ≈ M*S

○ Machines can (barely) store the input

● S = Nε for some ε ∊ (0, 1)

○ Each machine can see a small fraction of the

input

INPUT

Mining and Learning with Graphs at Scale | NeurIPS’20

MPC model
A Model of Computation for MapReduce. KarloffSV, SODA’10

282

● Key restriction (load balancing)
○ each machine sends/receives data of size

O(S) in each round
● Goal

○ Minimize #rounds

INPUT

Mining and Learning with Graphs at Scale | NeurIPS’20

Example problem: connected components

283

Two vertices in the same connected component

There is a path connecting them

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components - applications

284

(Hierarchical) Clustering Deduplication Building block for
other algorithms

Connected components is the most popular graph computation
The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing. Sahu, Mhedhbi, Salihoglu, Lin, Özsu, VLDB’18

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components - algorithms

Efficient implementations

HashToMin
[RastogiMCS, ICDE’13]

TwoPhase
[KiverisLMRV, SOCC’14]

Cracker
[LulliRCDL, ISCC’15]

LocalContract
[Ł.MW, arxiv]

Theory algorithms

O(log n)
[KarloffSV, SODA’10]

O(log log n) in random graphs
[AssadiSW, PODC’19]

O(logm/n log n log D)
[AndoniSSWZ, FOCS’18]

O(logm/n log n + log D)
[BehnezhadDEŁ.M, FOCS’19]

D = graph diameter

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components algorithm
Connected components at scale via local contractions. Łącki, Mirrokni, Włodarczyk, arxiv

286

while G has any edges

for each vertex v

label(v) := Uniform[0, 1]

best(v) := neighbor w of v minimizing label(w)

group nodes by best(v) and merge together

● In each iteration, the number of vertices shrinks by a constant factor

○ Algorithm requires O(log n) MPC rounds

● Similar algorithm takes O(log log n) rounds in random graphs

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components - relative running times

287

Graph
(#edges)

Orkut
(117M)

Friendster
(1.8B)

Clueweb
(37.3B)

videos
(626B)

webpages
(6.5T)

New 1.0 1.0 1.0 1.03 1.0

Cracker 1.38 1.16 2.65 1.0 ~3.0

TwoPhase 5.77 1.73 1.77

HashToMin 5.84 20.27

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components - theory

288

Theorem
Near-Optimal Massively Parallel Graph Connectivity. Behnezhad, Dhulipala, Esfandiari, Łącki, Mirrokni, FOCS’19

Connected components can be found in O(logm/n log n + log D) rounds, where
D is the diameter of the input graph.

Conjecture

Finding connected components requires Ω(log n) rounds.

In the MPC model with O(nε) space per machine:

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components - hard instance

289

Distinguish between a cycle on 2n nodes and two cycles on n nodes

Conjecture: requires Ω(log n) rounds in MPC model

Mining and Learning with Graphs at Scale | NeurIPS’20

Connected components - main challenge

290

Intuitive goal: aggregate consecutive nodes on one machine

2 rounds

Each machine has k nodes Each machine has 3k nodes

Workaround: give machines random read access to the graph

Mining and Learning with Graphs at Scale | NeurIPS’20

Random read access

291

● Store the graph in a distributed hash table
● Allow machines to read the graph adaptively within a round

Example:

● Input: collection of rooted trees

● A node can find the root of its tree in

a single round

● Used in affinity clustering

Mining and Learning with Graphs at Scale | NeurIPS’20

Adaptive MPC model
Massively Parallel Computation via Remote Memory Access. Behnezhad, Dhulipala, Esfandiari, Łącki, Schudy, Mirrokni, SPAA’19

292

Distributed hash table

Distributed hash table

Modification of MPC. Differences:

● All messages saved to a distributed

hash table (DHT)

● In the following round each machine

can adaptively read O(S) values

from the DHT

Same bounds on communication

Mining and Learning with Graphs at Scale | NeurIPS’20

Adaptive MPC - realism

293

Distributed hash table

Distributed hash table

Is the model realistic?

● Remote read latency?

○ Use hardware support (RDMA)

○ 1-3 μs (~20x slower than RAM)

● Fault tolerance?

○ Relies on a fault-tolerant

distributed hash table

Mining and Learning with Graphs at Scale | NeurIPS’20
294

Adaptive MPC - theory results

Problem MPC AMPC

Maximal Independent Set Õ(sqrt(log n)) O(1)

Connectivity O(log D) O(1)

Minimum Spanning Tree (MST) O(log n) O(1)

Approximate matching Õ(sqrt(log n)) O(1)

Assumptions
● nε space per machine
● Graph has n1+ε edges
● D = graph diameter

Mining and Learning with Graphs at Scale | NeurIPS’20
295

Adaptive MPC - empirical results
Parallel Graph Algorithms in Constant Adaptive Rounds: Theory meets Practice. Behnezhad, Dhulipala, Esfandiari, Łącki, Mirrokni, Schudy, VLDB’20.

Problem
MPC

rounds
AMPC
rounds

AMPC
Speedup

Minimum spanning forest 33-84 5 2.6x - 7.2x

Maximal independent set 8-14 1 2.3x - 3x

Maximal matching 8-16 1 1.16x - 1.7x

Results on 5 graphs of up to 225B edges

Mining and Learning with Graphs at Scale | NeurIPS’20
296

ASYMP: Fault-tolerant Mining of Massive Graphs Asynchronously
ASYMP: Fault-tolerant Mining of Massive Graphs. Fleury, Lattanzi, Mirrokni, Perozzi, arxiv.

● Shortest paths - hard to solve in (A)MPC model

● Solution: ASYMP = new framework for message passing algorithms

Asynchronous message passing Light fault tolerance
Asynchronous checkpoints

More efficient CPU
utilization

Impressive performance
(shortest paths)

How to use for other
problems?

Mining and Learning with Graphs at Scale | NeurIPS’20
297

Conclusion

● Many interesting problems on the boundary

of algorithms & systems

● Distributed systems allow handling graphs

with trillions of edges

● Read-only access to the input allows

significant speedups

● What about large-but-not-huge graphs?

○ Big overhead / resource usage of a distributed system

○ Next talk: working with graphs of up to 10B edges on a single machine
Image: https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png

Mining and Learning with Graphs at Scale | NeurIPS’20

Jakub Łącki

Collaborators: David Applegate, Laxman Dhulipala, David Eisenstat, Heinrich Jiang,
Vahab Mirrokni, Jessica Shi

Multi-core parallel clustering

Mining and Learning with Graphs at Scale | NeurIPS’20

Goal

299

Cluster billion-edge graphs in few minutes on a single machine

Mining and Learning with Graphs at Scale | NeurIPS’20

Multi-core parallel graph algorithms

300

Basic graph problems on a 225B-edge graph can be solved in <3 minutes
Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable. Dhulipala, Blelloch, and Shun, SPAA’18

Mining and Learning with Graphs at Scale | NeurIPS’20

Multi-core algorithms are fast and cost-effective

301

Efficient multi-core algorithms can outperform high-end supercomputers at low cost
ConnectIt: A Framework for Static and Incremental Parallel Graph Connectivity Algorithms. Dhulipala, Hong, and Shun, VLDB’21

FastSV [Zhang et al. 2020] is run on a Cray XC40 supercomputer.

Mining and Learning with Graphs at Scale | NeurIPS’20

Multi-core parallel clustering

302

● Clustering is a complex problem

○ High running time complexity

○ Input is a weighted graph

● We develop parallel clustering algorithms

for billion-edge graphs

○ Affinity clustering

○ Correlation clustering

○ Modularity clustering

Mining and Learning with Graphs at Scale | NeurIPS’20

GBBS framework
Laxman Dhulipala (MIT), Jessica Shi (MIT), Tom Tseng (MIT), Guy Blelloch (CMU), Julian Shun (MIT)

303

C++ library for implementing parallel graph algorithms

https://github.com/ParAlg/gbbs

Graph representation Parallel graph primitives

(low level)

Parallel scheduler Work-efficient implementations

polylog depth

https://github.com/ParAlg/gbbs

Mining and Learning with Graphs at Scale | NeurIPS’20

Affinity clustering

304

● Clustering of weighted graphs

● Recap: each node in the same cluster as its most similar neighbor

● Parallel algorithm repeats the following steps:
a. Mark highest-weight incident edge of each node

b. Find connected components of the marked edges

c. Contract each cluster to a single node

4

3

2

linkage({2, 3})

Mining and Learning with Graphs at Scale | NeurIPS’20

Parallel affinity clustering - quality

305

Graph
Adjusted RAND index

Affinity HAC DBScan Modularity

banknote 0.8467 0.4637 0.7903 0.3219

glass 0.8525 0.7852 0.7125 0.5800

images 0.5224 0.5551 0.5053 0.5731

iris 0.8858 0.7455 0.8858 0.5526

letters 0.2890 0.2670 0.1914 0.2480

pageblocks 0.2001 0.0722 0.1481 0.0528

phoneme 0.7324 0.7908 0.7732 0.7678

seeds 0.7329 0.5877 0.7171 0.7066

Datasets from UCI, Kaggle and The elements of statistical learning, Friedman, Hastie, and Tibshirani.

Mining and Learning with Graphs at Scale | NeurIPS’20

Parallel affinity clustering - performance

306

#edges Serial Parallel Speedup

117M 110s 26s 4.2x

922M 450s 153s 2.9x

1.8B 5593s 640s 8.7x ⬅ 200 GB RAM

Clustering times (excl. I/O time)
All times from a shared machine in a production cell

Mining and Learning with Graphs at Scale | NeurIPS’20

Correlation clustering

307

Input: graph with positive / negative edge weights

● Positive edge ~ endpoints should be in the same cluster

● Negative edge ~ endpoints should be in different clusters

Objective: maximize sum of edge weights within clusters

4

2

-3

2 1

3

-4

Objective = 9

Mining and Learning with Graphs at Scale | NeurIPS’20

Correlation clustering algorithm

308

Start with each node in its cluster

1. Find each node’s best move (to a cluster based on objective)

2. Find each cluster’s best move (to merge with a cluster)Ite
ra

te

Mining and Learning with Graphs at Scale | NeurIPS’20

Parallel correlation clustering algorithm

309

Start with each node in its cluster

1. Find each node’s best move (to a cluster based on objective)

2. Find each cluster’s best move (to merge with a cluster)

Compute best moves in parallel + aggregate new clusters in parallel

Compute best moves in parallel + aggregate new clusters in parallel

Ite
ra

te

Mining and Learning with Graphs at Scale | NeurIPS’20

Parallel correlation clustering - empirical results

310

#edges serial parallel speedup

380M 413 80 5.1x

950M 1184 301 3.9x

#edges serial parallel difference

380M 2.4464 2.3081 94.3%

950M 4.7052 4.6943 99.7%

Objective value (scaled by 107)

Running time (seconds)

Mining and Learning with Graphs at Scale | NeurIPS’20
311

Summary

Parallel in-memory algorithms

● Can be both faster and cheaper than

distributed algorithms

● Can cluster XB-edge graphs in few minutes

● Speed up clustering 3-9x compared to

serial baselines

Download:

github.com/google-research/google-research/tree/master/parallel_clustering/

http://github.com/google-research/google-research/tree/master/parallel_clustering/

https://gm-neurips-2020.github.io/

Mining and Learning with
Graphs at Scale

https://gm-neurips-2020.github.io/

