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Graph Mining: Basic tools and algorithms
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Graph Neural Networks
How can we use deep learning on graphs? How can 

we use graphs in deep learning?

Systems, Algorithms and Scalability
How do we deal with massive graphs? How can 

graphs help us organize Google-scale data?
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What are graphs?

Graphs are representations of relationships 

(edges) between entities (nodes).

In the most general case, graphs have:

- varying numbers of edges…

- with different edge types going to 

different node types…

- with a highly complex structure.

Traffic, maps (Google Maps)

Disease Spread
https://www.pnas.org/content/116/2/401

Image Pixels

Social Networks



Types of Graphs
Natural graphs are graphs in which the edge 

relationship comes from an external source. Think: 

payments, social networks, roadways, 

coclick/cowatch.

By contrast, similarity graphs are graphs in which the 

edge relationship is based on some measure of 

similarity/distance between nodes. In these cases, we 

start with a blob of (meta-)data and attempt to give 

that blob structure via graph representation. 

 



Why Graphs?

Computation on abstract concepts
Most data is fundamentally about relationships, 

and graphs can help us . Graphs can also help 

us abstract local information and use it to 

extract useful global information from data.

Computation on different data types
We constantly deal with visual, textual, and 

semantic information, and all of this data relates 

to each other. Graphs provide a natural way to 

handle multi-modal data.

Social Network Analysis, Wikimedia Commons



Why Graphs? Global and Local View
Global view:
Graph structure/topology can tell us a lot 

about our data such as uncovering clusters 

of data points, or providing distance 

measures for otherwise intangible 

concepts.

Local view: 
Local edges to and from a node can tell us 

something useful about a node -- 

something that is difficult to express with a 

single element. 

Search Query: 
AppleApple 

Inc.

The black center pixel is part of an eye, but that is 
only apparent when you can see nearby pixels.



Graphs at Scale: Algorithms, Learning, & Systems 
for Impact

Because graph representations are so flexible, we 

often want to use them on Google-scale data. 

We are often dealing with billions of nodes and 

many more edges. To work with data at this scale, 

we have to combine algorithmic ideas with the right 

systems and ML models. 

This can be very hard, and the devil is in details.

These tools power hundreds of projects at Google  

in Search, Ads, Youtube, Play, Cloud, Maps, 

Payments, and more.

Collaborative Filtering for 
YouTube Recommendations

Same-meaning queries for Keyword 
matching systems

Finding micro-markets in 
designing A/B experiments 

[KDD’19, NeurIPS’19]

Better Caching for saving 32% Flash 
I/O for Search Infra(VLDB’19).

https://dl.acm.org/doi/pdf/10.1145/3292500.3330778
https://papers.nips.cc/paper/2019/hash/bc047286b224b7bfa73d4cb02de1238d-Abstract.html
http://www.vldb.org/pvldb/vol12/p709-archer.pdf


A bit of History: Graph Mining Team
https://research.google/teams/algorithms-optimization/graph-mining/

Mission: Develop the most scalable & reliable  graph-based mining and learning library, and 
make it universally accessible (XT edges)

Started ~11 years ago from scalable graph mining →  graph-based learning and graph neural networks.
Team Skills: Algorithms, Systems, and ML. Research + Engineering. 

Publish in a variety of venues: NeurIPS, ICML, SODA, FOCS, STOC, VLDB, KDD, WWW, WSDM, AAAI, and ...

Lessons Learned: 
Algorithms+System Research: Important to combine right algorithms and distributed systems

● Tried Pregel first, but then it was not suitable for some large-scale applications (e.g., fault-tolerance)

● Then, we built infrastructure on top of MapReduce/Flume and Distributed Hash Table Service (DHT).

● Had to rethink the systems for Tensorflow and GNN training via Graph Sampling...

More popular tools vs. less commonly tools in our library:
● Widely Used: Graph Building and Clustering, Semi-supervised Learning, GNNs and Embedding.

● Less Used: Shortest Paths, Matchings, Graph Similarity, Graph-based centrality scores.

https://research.google/teams/algorithms-optimization/graph-mining/


Computation Frameworks: System+Algorithms+ML
Many popular frameworks for big data/ML analysis:

● MapReduce / Hadoop [DeanG, OSDI’04]

● Pregel / Giraph [e.g., MalewiczABDHLC, SIGMOD’10]

● TensorFlow/Pytorch/Keras [e.g., Abadi et al]

● Beam / Flume / Cloud Dataflow [e.g., AkidauBCC+, VLDB’15]

Our library has four main parts:

1. Distributed Algorithms: Mapreduce/Flume/DHT

○ graphs with XT edges in hours

2. Multi-core In-memory: GBBS graph-based

○ XXB (XXM*) edges in minutes (seconds*)

3. GraphTesnor: Graph Neural Networks in Tensorflow

○ Graph analysis integrated w/ deep learning tools

4. Dynamic Graph Mining (not covered here)

○ Handling online requests very fast 



The Graph Mining Toolbox: Overview 

Information Propagation
Label Propagation,

Cluster Propagation, 
Iterative Classification,

Semi-supervised Learning

Graph Signals
Local Density, PageRank, 
Centrality, Oddball Score,
Clustering Coefficients, 

Graph Embeddings

Graph Building

Nearest Neighbors,
Locally Sensitive Hashing,

Local Neighborhood Search,
Graph Learning 

Clustering

Hierarchical Clustering,
Connected Components

Semi-supervised Clustering, 
Community Detection

Topology Analysis and 
Similarity Ranking 

Personalized PageRank, 
ego-Net Mining,  

Sampling like Coverage,

Graph Neural Networks
GNNs: Graph Convolutions, 

Message-Passing Neural Nets, 
Neural-based Embedding



Tools for Learning with Graphs

Semi-supervised Clustering
Optimized Clustering for labeled training data

Graph-based Semi-supervised Learning(SSL)
Learn a label propagation function from training data.

Neural Graph Embedding & Graph Convolutions
Apply deep learning to arbitrary graph structures

Grale (Learning Graphs)
Learn graph structure from data.

?



The Graph Mining Toolbox 
Graph Building and Graph Learning
Graph Building answers two questions: what is 

the optimal graph for a given dataset; and how 

can we create that graph in a scalable way. 

Techniques: Locally sensitive hashing(LSH), 

Local Search, Auto-encoders, ...

Clustering
Clustering tools allow us to identify important 

patterns in data, aka clusters. 

Techniques: LSH/sketching, random walks, 

message-passing, Composable Core-sets for 

hierarchical, overlapping, spectral, balanced 

clustering, ...



The Graph Mining Toolbox 

Information Propagation & graph-based SSL
Information sparsity is a common problem in big data. 

We use graphs for semi-supervised learning(SSL) to 

spread information predicting missing data and 

correcting misinformation.

Techniques: graph-based semi-supervised learning, 

spectral theory, iterative classification.

Graph Signals and Topology Analysis
Graph structure allows computing multi-hop 

similarity and graph signals, e.g., egoNets and 

Personalized PageRank. In a multimodal world, we 

can use graph information to extract useful signals, 

e.g., edge density and graph embedding.  

Techniques: random walks, clustering, embedding.



Graph Neural Networks

Advances in deep learning have helped us build 

and deploy novel graph building and label 

propagation techniques. We’ve  also been 

developing a scalable Graph Convolutional 

Network system that promises to completely 

upend how we think about graph data. 

Techniques: Graph Convolutions, Message-Passing 

Neural Nets, Neural-based Embedding, Graph 

Attention Models, PPR for GNNs, Self-supervised 

Learning.

1. learn to predict label from 
features 2. add predicted labels on 

unlabeled nodes

3. Extract 
embeddings



Canonical Uses: Spam, Fraud and Abuse Detection

Anomaly Detection via Density Clustering
Core intuition: statistically unlikely dense 

clusters correlate highly with malicious behavior.

Graph Mining tools let us tackle Trust&Saftey problems in many ways.

Preventing spam, fraud, and abuse is central for many products, e.g., YouTube  and Ads. 

Label Propagation
Core intuition: start with known bad actors, and 

use the graph structure to identify nearby 

neighbors that may also be suspicious. 



Canonical Uses: Improving ML Models
Relationship Discovery
Ever wonder how Social Networks find “People 

you may know”? The famous ‘social graph’ is 

represented as a real graph. We can use graph 

information to discover connections that may 

not appear naturally.

Feature Extraction
Generated graph signals like clusters, PPR 

vectors, and graph embeddings are useful as 

training signals to upstream ML models. In 

multi-modal models, graph data can be seen as 

another modality, part of the larger whole.

Google Images ‘Visually 

Similar Images’ is powered 

in part through Graph 

Mining technologies. 

DNN



Canonical Uses: Efficient Computing
Resource Efficiency: Communication Overhead 
We can use graph partitioning algorithms like 

balanced partitioning to intelligently split large 

datasets, reducing overhead for distributed 

computing, e.g., in Google Driving Directions.

Data Efficiency and Active Learning
We can utilize graphs to answer queries like ‘what 

are the most diverse points in my dataset’, which 

can power active learning loops. Graph-based 

semi-supervised learning can also be used in 

data-sparse models with less data.

Graph clustering is used by Maps to help optimize 

backend of driving directions [WSDM’16].

f(                              
)

Max Cover

Graph-based clustering[NeurIPS’17] and coverage[KDD’18] 

is applied for active learning and feature engineering.

https://dl.acm.org/doi/10.1145/2835776.2835829
https://papers.nips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html
https://www.kdd.org/kdd2018/accepted-papers/view/optimal-distributed-submodular-optimization-via-sketching


The end of the beginning
The Graph Mining team combines research with 

application to create a powerful suite of tools. 

We’re excited to share what we’ve been working on!

Hopefully, the last twenty minutes or so have 

provided a useful backdrop for why graph-based 

learning at scale is so important.

During the rest of this workshop, you’ll hear from 

experts in the field discussing our work in much 

more depth, with a general focus on distributed 

algorithms and scalable graph-based learning.

GoogleAI Graph Mining
https://research.google/teams/

algorithms-optimization/graph-mining/

Part of Algorithms and Optimization

https://research.google/teams/algorithms-optimization/

https://research.google/teams/algorithms-optimization/graph-mining/
https://research.google/teams/algorithms-optimization/graph-mining/
https://research.google/teams/algorithms-optimization/
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Rest of the Workshop
-Applications: Covid Forecasting, Privacy, Causal Inference.

-Graph Mining: Basic tools and algorithms
How do we learn, cluster, and use graphs at scale? Graph 

Learning, Similarity Ranking, Clustering, and Label Smearing. 

-Graph Neural Networks
How can we use deep learning on graphs? How can we use 

graphs in deep learning?

-Algorithms, Systems and Scalability
How do we deal with massive graphs and use them to 

organize Google-scale data? TensorFlow, Flume, Multi-core.



Citations
 (excluding papers - which will be covered later)

ICONS:

Document: https://thenounproject.com/search/?q=documents&i=3594373

Forward: https://thenounproject.com/search/?q=time+forward&i=2596961

Globe: https://thenounproject.com/search/?q=globe&i=3119957

Image: https://thenounproject.com/search/?q=images&i=3593232

Network: https://thenounproject.com/search/?q=network&i=1350199

Talk Bubble: https://thenounproject.com/search/?q=talk+bubble&i=842574

Handshake: https://thenounproject.com/search/?q=handshake&i=983923

Handshake: https://thenounproject.com/search/?q=handshake&i=3592892

Publisher: https://thenounproject.com/search/?q=publisher&i=3048742

Advertise: https://thenounproject.com/search/?q=advertiser&i=2374780

Account: https://thenounproject.com/search/?q=account&i=1931153

Network: https://thenounproject.com/term/network/54119/

Clustering: https://thenounproject.com/search/?q=clusters&i=195949

Network: https://thenounproject.com/search/?q=network&i=1061260

GRAPHS

Disease Spread: https://www.pnas.org/content/116/2/401

Social Network Analysis: 

https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png

OTHER:

Cat: https://commons.wikimedia.org/wiki/File:Cat_March_2010-1.jpg

Analyze Love: https://xkcd.com/601/

CC3.0: https://creativecommons.org/licenses/by/3.0/us/legalcode

CC2.5: https://creativecommons.org/licenses/by-nc/2.5/ 

https://thenounproject.com/search/?q=documents&i=3594373
https://thenounproject.com/search/?q=time+forward&i=2596961
https://thenounproject.com/search/?q=globe&i=3119957
https://thenounproject.com/search/?q=images&i=3593232
https://thenounproject.com/search/?q=network&i=1350199
https://thenounproject.com/search/?q=talk+bubble&i=842574
https://thenounproject.com/search/?q=handshake&i=983923
https://thenounproject.com/search/?q=handshake&i=3592892
https://thenounproject.com/search/?q=publisher&i=3048742
https://thenounproject.com/search/?q=advertiser&i=2374780
https://thenounproject.com/search/?q=account&i=1931153
https://thenounproject.com/term/network/54119/
https://thenounproject.com/search/?q=clusters&i=195949
https://thenounproject.com/search/?q=network&i=1061260
https://www.pnas.org/content/116/2/401
https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png
https://commons.wikimedia.org/wiki/File:Cat_March_2010-1.jpg
https://xkcd.com/601/
https://creativecommons.org/licenses/by/3.0/us/legalcode
https://creativecommons.org/licenses/by-nc/2.5/


Up next, we’ll dive into a few 

Application Stories of Graph-based 

Learning, starting with Amol Kapoor 

discussing GNNs and COVID.

23
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Application 
Stories

Amol Kapoor, Alessandro 
Epasto, Jean Pouget-Abadie 

Modelling COVID with GNNs

Privacy

Experimental Design and 
Causal Inference

24
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Modeling COVID with 
Spatio-Temporal Graph Neural 
Networks
Amol Kapoor
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The Basics
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The Basics

Deep ML models learn a function f(x), 

where x is some (curated) feature set. 

X
X X
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Intermediate states -- embeddings -- 

in Deep ML models capture complex 

interactions between features in high 

dimensional space.

X
X X
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The Basics

Deep ML models learn a function f(x), 

where x is some (curated) feature set. 

Intermediate states -- embeddings -- 

in Deep ML models capture complex 

interactions between features in high 

dimensional space.

Deep ML models are optimized for 

some loss, which in turn defines how 

each intermediate embedding is 

structured.

X
X X
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Deep ML models are powerful 

because you can put anything on the 

ends, and the intermediate state will 

fill in the blanks.
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DL in Epidemiology

SIR Models modelling disease spread by 

constraining the relationship between three 

groups: Susceptible, Infected, and Recovered. 

Accurately identifying these groupings (and 

the transition functions between them) is 

extremely difficult.

This is where deep learning comes in. DL 

shows ability in processing complex disease 

dynamics and multidimensional data that 

cannot be captured by traditional 

compartmental models and statistical models.

`
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Modelling COVID
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Intuition: epidemiological modelling depends on 

time and space. The number of cases I have 

tomorrow is a function of the cases I had yesterday, 

and the cases of my neighbors today.

This is a multimodal problem.
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Can utilize mobility data to create temporal 

and spatial edges between nodes, in order 

to understand how people (and, by 

extension, COVID) move around. 

Google has rich mobility info through 

aggregated GPS analysis. This allows us to 

answer questions like ‘how many people 

flew from King County, Washington, to 

Queens, NY’, or ‘how many people in LA 

used the subway today’. 

Mobility Data

Top: Inter-county mobility data from King County. 
Bottom: Intra-county mobility data from King County.
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Modelling COVID
Day 10

Day 9

Day 8

Using NYT COVID report data and Google 

mobility data at US county level, we created 

a spatio-temporal graph. Each node was a 

time + place, and had case counts and 

intra-mobility data as self-features.

The graph can be modeled as 150 slices. 

Edges within each slice are spatial, and are 

weighted based on mobility. Edges between 

slices are temporal, and are (inversely) 

weighted based on the amount of time 

passed between the edge. 

King County

Snohomish

Multnomah
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Why GCNs?

One of the greatest benefits of graph data is that 

we can incorporate context into our analysis. 

When analyzing a node, we can surface its 

neighborhood as a source of information.

GCNs supercharge this principle by applying deep 

learning on top. We can use a GCN to build a 

learned hierarchical representation around a given 

node, allowing us to pull in contextual information 

that will help us predict node level features. 

Like, say, COVID case counts.

H0 H1 H2

P

mlp
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(Initial) Results

Initial results show that the GNN is able 

to successfully use the mobility data to 

better predict next-day-change in 

COVID caseload. 

With virtually no hyperparameter tuning 

or feature engineering, we achieve as 

significant reduction in error on RMSLE 

and Pearson Correlation.

Collaborators: sherryben@, obanion@, Flourish
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(Initial) Results
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(Initial) Results
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Conclusions
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Deep ML models are powerful because they can take 
arbitrary inputs and learn mappings to requested 

outputs.
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Graphs provide a means to incorporate context, which 
is a powerful source of information. GCNs build this 

context into a unifying deep-ml framework.
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GCNs can be used to model COVID (and other things!), 
and represent a powerful tool-in-the-toolbox to tackle 

all sorts of epidemiological problems. 
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Citations
Based on Work By:

Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, Shawn O'Banion. 

Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks. 

MLG’20, epiDAMIK’20. https://arxiv.org/abs/2007.03113 

New York Times. Coronavirus (Covid-19) Data in the United States. 

https://github.com/nytimes/covid-19-data

ICONS:
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OTHER:

CC3.0: https://creativecommons.org/licenses/by/3.0/us/legalcode

CC2.5: https://creativecommons.org/licenses/by-nc/2.5/ 

https://arxiv.org/abs/2007.03113
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https://creativecommons.org/licenses/by/3.0/us/legalcode
https://creativecommons.org/licenses/by-nc/2.5/
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Application Story: Privacy
Alessandro Epasto



Mining and Learning with Graphs at Scale  | NeurIPS’20

Privacy is a fundamental concern in the analysis of user data and graphs 
are no exception.

Two application stories for privacy in graphs:

1. Can we use graph mining (graph clustering) to improve user 
privacy?

2. How can we protect the users’ privacy in a social network 
application?

Privacy for Graphs, Graphs for Privacy
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As part of the Chrome 
Privacy Sandbox effort 
to deprecate the use 
of third-party cookies.

FLoC aim at replacing 
identifying third-party 
cookies with 
anonymous cookies 
shared by many users.

FLoC -- Federated Learning of Cohorts 

Output: FLoCs with 
>= k users with similar 
browsing interests

Input: User x 
Browsing history 
data.

Users Domains
Users

More details on FLoC: https://github.com/jkarlin/floc

https://github.com/jkarlin/floc


Mining and Learning with Graphs at Scale  | NeurIPS’20

The essence of the FLoC is a 
size-constrained clustering problem 
where clusters must respect minimum 
sizes.

We evaluated many clustering 
algorithms including Hierarchical Graph 
Clustering algorithms like Affinity 
(discussed in a later talk).

Affinity outperformed all variants tested 
in our experiment reported in the public 
FLoC white paper.

Clustering for Privacy

Results on the public MSD 
dataset. 

More details: bit.ly/3ngKcrK 

http://bit.ly/3ngKcrK
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Consider a social-network-based 
recommender system.

Can the user receive suggestions based on 
their social contact, without sharing their local 
private device data or even their private 
social contacts with the central 
recommendation system?

Based on work Chierichetti, Epasto Kumar, 
Lattanzi, Mirrokni, KDD’15  (best paper award) 
and Epasto, Esfandiari, Mirrokni, WWW’19.

On-Device Public-Private Graph Model 

Image Credit “Freinds by Med Marki from the Noun Project”
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Public-Private Graphs
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Can we keep all private data and private contacts on the users’ devices and 
solve important machine learning problems without any privacy loss? 

Yes! We provide algorithms for the following problems:
• K-clustering (k-center, k-means);
• Personalized social-network based recommendations: heavy hitters, 

linear suggestions.

On-Device Algorithms for Public-Private Data with Absolute  Privacy,  Epasto, 
Esfandiari, Mirrokni, WWW’19

On Device Public-Private Computation
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Data Separation

Public contacts in the cloud

Local 
Private 
Contacts
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Two Step Process
Sends the sketches 
to the individual 
users.

Public Graph

Preprocessed by the cloud.

Synopsis of 
public data

Private 
Contacts 
exchange 
their public 
sketches
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Thank you for your attention!

Please check out our next sessions.
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Clustering and Causal Inference
Jean Pouget-Abadie
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What is causal inference?

● Causal Inference is a branch of statistics 

that tries to establish the link between 

cause and effect.

● Randomized trials (e.g., clinical trials, A/B 

tests) assign units (e.g., patients, users) 

to a treatment condition or control 

condition.

56

Treatment Control
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Where does clustering come in?

● Randomized trials can suffer from 

interference if the treatment of one 

unit affects another.

● To place units in conditions as close 

to the “all treated” and “all control” 

world, cluster-randomized trials 

assign units to treatment/control in 

clusters.

57

Cluster randomized trial Randomized Assignment

Control unit

Treated unit

Treatment-control interaction
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Example 1: vaccination trials

58

A unit surrounded by 
vaccinated units is less 
likely to get sick than...

... a unit partially 
surrounded by 
vaccinated units.

Vaccinated

Non-vaccinated

● Community clustering  has been 

studied for vaccination trials. Such 

a clustering can be as simple as 

individual vs household [1].

[1] Datta, Susmita, M. Elizabeth Halloran, and Ira M. Longini Jr. "Efficiency of estimating vaccine 
efficacy for susceptibility and infectiousness: randomization by individual versus household." 
Biometrics 55.3 (1999): 792-798.
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Example 2: social networks

● Balanced partitioning is a popular method to 

split a social network into buckets and avoid 

too many interactions between the edges of a 

social network [1, 2].

59

Word of mouth can easily 
spread through a social network

[1] Eckles, Dean, Brian Karrer, and Johan Ugander. "Design and analysis of 
experiments in networks: Reducing bias from interference." Journal of Causal 
Inference 5.1 (2016).

[2] Gui, Huan, Ya Xu, Anmol Bhasin, and Jiawei Han. "Network a/b testing: From 
sampling to estimation." In Proceedings of the 24th International Conference on 
World Wide Web, pp. 399-409. 2015.
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Example 3: online marketplaces

60

Buyers in online marketplaces 
compete with one another. 
Changing one market cluster..

...affects all buyers in it and 
all buyers competing 
against them.

● Clustering has also been studied for experimentation of 

online marketplaces [1, 2]

● Different methods have been used. Geographical 
partitioning [3], and more recently correlation clustering 

[4].

[1] Pouget-Abadie, Jean, Vahab Mirrokni, David C. Parkes, and Edoardo M. Airoldi. "Optimizing 
cluster-based randomized experiments under monotonicity." In KDD, pp. 2090-2099. 2018.

[2] Holtz, David, Ruben Lobel, Inessa Liskovich, and Sinan Aral. "Reducing Interference Bias in Online 
Marketplace Pricing Experiments." arXiv:2004.12489 (2020).

[3] Rolnick, David, Kevin Aydin, Jean Pouget-Abadie, Shahab Kamali, Vahab Mirrokni, and Amir Najmi. 
"Randomized Experimental Design via Geographic Clustering." In KDD, pp. 2745-2753. 2019.

[4] Pouget-Abadie, Jean, Kevin Aydin, Warren Schudy, Kay Brodersen, and Vahab Mirrokni. "Variance 
Reduction in Bipartite Experiments through Correlation Clustering." In NeurIPS, pp. 13309-13319. 2019.
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Deep Dive: Correlation Clustering for 
Marketplace Experiments

● In [1], the authors show that a specific instance of 
correlation clustering is optimal for maximizing the power 
of item-diverted user-focused marketplace experiments.

61

Treatment Control

[1] Pouget-Abadie, Jean, et al. "Variance Reduction in Bipartite Experiments through Correlation Clustering." NeurIPS’2019.

Noise level

Correlation Clustering outperforms other 
clustering methods [1]



Graph Mining and 
Learning at Scale
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Agenda

● Grale: Learning Graphs
● Similarity Ranking
● Clustering At Scale
● Community Detection
● Label Propagation
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Grale: Learning Graphs
Jonathan Halcrow

Paper: "Grale: Designing Networks for Graph Learning" KDD'20

https://dl.acm.org/doi/10.1145/3394486.3403302
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A Cartoon 
Example
In a toy example, we may be given a 
partially labeled set of nodes and a graph 
indicating some similarity relation on the 
nodes. 
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A Cartoon 
Example
In a toy example, we may be given a 
partially labeled set of nodes and a graph 
indicating some similarity relation on the 
nodes. 

We use the graph to infer labels for the 
unlabeled set, by spreading from the 
labeled nodes.
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A "Real-World" 
Example
In real world examples, the picture is rarely 
this clear. Instead of a single set of 
relationships closely aligned with our target 
labels, we usually have many types of 
relationships to pick from, of varying 
quality.
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A "Real-World" 
Example
In real world examples, the picture is rarely 
this clear. Instead of a single set of 
relationships closely aligned with our target 
labels, we usually have many types of 
relationships to pick from, of varying 
quality.

A bad choice of graph will yield a poorly 
performing graph learning algorithm.

A Bad Choice
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A "Real-World" 
Example
In real world examples, the picture is rarely 
this clear. Instead of a single set of 
relationships closely aligned with our target 
labels, we usually have many types of 
relationships to pick from, of varying 
quality.

The choice of graph is critical for the 
performance of graph learning algorithms.

A Better Choice
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The Graph 
Design Problem
Given:

● A multi-modal feature space 𝕏, 
each mode with a natural 
distance measure, 𝜿i

● A partial labeling on this feature 
space

● A learning algorithm which is a 
function of some graph G 
having vertex set equal to the 
elements of 𝕏

Find: An edge weighting function 
which allows us to construct a graph 
which optimizes the performance of 
the learning algorithm

Observed relationships 
vs. an ideal similarity 
measure
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Application to 
label 
propagation
In our paper, we focus on the designing graphs 
for a single hop of label propagation.  
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Application to 
label 
propagation
In our paper, we focus on the designing graphs 
for a single hop of label propagation.   

We assume that the nodes in our graph have 
several different features associated with them, 
each with a natural distance. We learn the edge 
weights as functions of these distances.
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Application to 
label 
propagation
In our paper, we focus on the designing graphs 
for a single hop of label propagation.     

We assume that the nodes in our graph have 
several different features associated with them, 
each with a natural distance. We learn the edge 
weights as functions of these distances.

We show that in this setting, minimizing the 
log-loss for the multi-class label propagation 
classifier is equivalent to minimizing the log-loss 
for the binary prediction that two nodes are in 
the same class
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Grale: A Scalable 
Solution
Step 1:

Generate candidate pairs via locality 
sensitive hashing

Step 2:

Train a pairwise model to predict same 
class membership, or apply the model to 
infer similarity on pairs

Bucket points via LSH

Model training Graph Building
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Locality Sensitive 
Hashing
A key requirement for Grale is that it must 
scale to datasets containing billions of 
nodes, making an all-pairs search 
infeasible. Instead we rely on approximate 
similarity search using locality sensitive 
hashing. 

An LSH function is a hash function with the 
property that points which are 'close' are 
likely to hash to the same value, while 
points which are 'far' are unlikely to.

h1

h2

h3

h4
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Locality Sensitive 
Hashing
In our case, 'close' and 'far' depend on what 
our model learns.  We show that 
combinations of LSH functions for our 
simpler per-feature distances can serve as 
LSH functions for the model.

Points which are 'close' in feature values, 
should also be 'close' according to our 
learned similarity (with some basic 
continuity assumptions).

h1

h2

h3

h4
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Locality Sensitive 
Hashing
Further Reading (from literature and our team):

● Gionis et al - Similarity Search in High Dimensions via 
Hashing

● Charikar Similarity estimation techniques from rounding 
algorithms",

● Broder et al - Syntactic Clustering of the Web
● Indyk, Motwani - Approximate Nearest Neighbors: 

Towards Removing the Curse of Dimensionality
● Locality-Sensitive Hashing Scheme Based on p-Stable 

Distributions  (Andoni et al)
● Chen et al - Locality-Sensitive Hashing for 

f-Divergences and Krein Kernels: Mutual Information 
Loss and Beyond

h1

h2

h3

h4

http://www.vldb.org/conf/1999/P49.pdf
http://www.vldb.org/conf/1999/P49.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf
http://acberg.com/bigdata/papers/broder_shingling.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/IndykM-curse.pdf
https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/IndykM-curse.pdf
http://theory.lcs.mit.edu/~indyk/nips-nn.ps
http://theory.lcs.mit.edu/~indyk/nips-nn.ps
https://papers.nips.cc/paper/2019/file/21b29648a47a45ad16bb0da0c004dfba-Paper.pdf
https://papers.nips.cc/paper/2019/file/21b29648a47a45ad16bb0da0c004dfba-Paper.pdf
https://papers.nips.cc/paper/2019/file/21b29648a47a45ad16bb0da0c004dfba-Paper.pdf
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Model Structure

The specific choice of model structure may 
vary depending on the application, but 
most commonly we use a neural net which 
combines a two-tower structure to learn 
embeddings over the nodes and combines 
it with the 'natural' distances in the data.
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Evaluation on 
small datasets
We compare Grale against other techniques which 
set out to learn task specific similarities for label 
propagation. 

USPS is a handwritten digit set, scanned from 
envelopes by the U.S. postal service and 
represented as numeric pixel values. 

MNIST is an-other popular handwritten digit 
dataset, where the images have been 
size-normalized and centered.
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Evaluation on 
small datasets
We compare Grale against other techniques which 
set out to learn task specific similarities for label 
propagation. 

We compare to other approaches tested in the 
paper:  "A Quest for Structure: Jointly Learning the 
Graph Structure and Semi-Supervised 
Classification" by Wu et al.

The other methods all focus on tuning 
per-dimension bandwidths in:



Mining and Learning with Graphs at Scale  | NeurIPS’20

Deployment for 
YouTube
Grale has been deployed in many different 
settings within Google. In particular it is 
used by YouTube to detect malicious 
actors.

We train the Grale model in this case to 
differentiate pairs of abusive items from 
pairs where at least one item is 
non-abusive.

A subgraph of related items on 
YouTube found by Grale
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LSH Efficiency

A comparison of the LSH function used for 
YouTube and a naive baseline. 

"Strong ties" are the fraction of pairs 
returned by LSH that are closer than a 
distance useful for high precision 
decisions.

"Weak ties" are those with worse than a 
moderate precision threshold.
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Single Nearest 
Neighbor 
performance
In practice, Grale is used as an input to a 
more complex abuse fighting system. To 
illustrate the performance of the graph 
alone, we compute the precision and recall 
of a single nearest neighbor classifier. 

In this evaluation, we select the oldest 25% 
of known abusive nodes as seeds, and 
evaluate against the newest 75%.
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Comparison to 
other 
approaches
The Grale+Label Propagation system is 
deployed alongside various heuristics and 
content based classifiers.

For the type of items that we target here, 
we increase recall by 89% vs these other 
approaches alone.  In particular we find 
many items that are missed by a first pass 
by purely content based classifiers.
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YouTube Graph 
Structure
Sorting the degree distribution in the graph 
by abuse status. We see that abusive nodes 
have much higher degree on average and 
are particularly strongly connected to 
other abusive nodes. This is precisely what 
we are hoping to achieve.
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Example Clusters Found on YouTube
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What else can we do?

A

B

● Unsupervised structural similarity measures
○ Personalized PageRank and more (see next 

section!)
● Graph Embeddings / Graph Neural Network 

methods
○ DeepWalk (later)
○ Deep Graph InfoMax

● Variational Autoencoders
○ Usefully captures the key information with a 

natural similarity measure
● Can also include any of the above as signals to 

Grale style models!
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Similarity Ranking
Alessandro Epasto

http://go/graph-mining


Similarity Ranking
Before we have seen how to build a similarity graph given 
non-graph data. 

Here we will address the question: Given a graph, how 
similar are two nodes in the graph? Can we predict 
missing edges from the graph?

Classical graph problem with applications in:

● Link prediction;
● Recommender systems, Collaborative filtering; 
● Spam & Abuse detection, Anonymily detection;
● Graph embeddings; 
● Clustering;
● Feature engineering in graph-based learning.



Classical Unsupervised Similarity Scores
The unsupervised version of the problem has a long stream of 
work starting from Liben-Nowell & Kleinberg in 2004.

Input: a weighted graph (no additional side information).

Output: a score for a given pair of nodes in the graph.

Similarity scores between pairs of nodes are defined by 
multi-hop neighborhood measures, e.g. number of direct, or 
indirect connections between users.

Extensions include using side information, heterogeneous 
graphs, etc.

A

B



Classical Unsupervised Similarity Scores
Some classic examples, similarity of A and B:

● Single hop:
○ Common Neighbors |N(A) ⋂ N(B)|   = 2
○ Jaccard coefficient |N(A)  ⋂ N(B)| / |N(A) ⋃ N(B)|  = ⅔
○ Adamic Adar

● Multi-hop: 
○ Katz score
○ Personalized PageRank. 

A

B



v u

 

 

 

 

The stationary distribution assigns a similarity score to each node in 
the graph w.r.t. node v.

For a node v (the seed) and a probability alpha

Personalized PageRank (PPR)



● Extensive algorithmic literature on efficient 
approximation methods (Andersen Chung and 
Lang, 2007).

● Efficient MapReduce / Distributed algorithm 
scaling to large graphs (billions of edges).

● Very good accuracy in our experimental 
evaluation compared to other similarities 
(Jaccard, Intersection, etc.). 

PPR is fast



● Clustering (Andersen Chung and Lang, 2007, A Local Algorithm for Finding Well-Connected 
Clusters Zhu et al. ICML’13) → Graph Clustering session

● Efficient GNN (PPRGo: GNNs at Scale KDD’20 Perozzi et al.) → Graph Neural Network 
session.

● Efficient Graph Embeddings (VERSE: Versatile Graph Embeddings from Similarity Measures, 
Tsitsulin et al. WWW’18)

● Spam & Abuse Detection (Robust PageRank and locally computable spam detection 
features, Mirrokni, AirWeb08. Local Computation of PageRank Contributions Andersen et al. 
WAW’07)

● Heterogenous graph ranking (Reduce and Aggregate: Similarity Ranking in 
Multi-Categorical Bipartite Graphs, Epasto et al. WWW’14)  → This talk

● Suggestions in social networks (Improved friend suggestion via Ego-net clustering, Epasto 
et al. VLDB16) → This talk

Applications of PPR and Similarity 
Ranking
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Reduce and Aggregate: Similarity 
Ranking in Multi-Categorical 
Bipartite Graphs 
Based on work by: Epasto, Feldman, Lattanzi, Leonardi and Mirrokni, WWW2014

http://go/graph-mining


Users

Heterogenous bipartite graph ranking

Items of different types

Given a subset of categories of 
interest determine a similarity 
ranking for the users.

We provide efficient distributed and 
real-time algorithms for the problem.



Heterogenous bipartite graph ranking

We provide results for computing 
rankings based on PPR, and other 
2-hop similarities. 

Recall

Pr
ec
is
io
n

Experiments on a AdWords 
recommendation problem.
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Improved friend suggestion via 
Ego-net clustering
Based on work by: Epasto, Lattanzi, Mirrokni, Sebe, Taei, Verma VLDB’16

http://go/graph-mining


A problematic case for graph similarity

The ego node part of many community.

Ego

A
B



Improving Collaborative Filtering

We should really cluster  the ego-networks

?

Should we suggest A to B as similar?

A

B



Ego-network score

Ego-network score 

Ego-network score, e.g., # ego-net clusters two nodes belong to 

Suppose we cluster all ego-networks.



Results: Ego-network score

Evaluation: ablation analysis, 
where we remove some edges 
and then we try to predict 
them.

Live Experiments: 1.4% decrease in 
live rejection rate (see paper)



Follow-up work:  Persona Graph and Embeddings

 

Original Graph 

Persona 
Graph 

node2vec

splitter

Epasto, Lattanzi, Leme - KDD’17. 
Epasto Perozzi WWW’19 will be covered in the Graph Neural Learning Section.
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Clustering at Scale
Vahab Mirrokni

Based on several papers, e.g., 

● Affinity Clustering: Hierarchical Clustering at Scale, Bateni, Behnezhad, 
Hajiaghayi, Kiveris, Lattanzi, Mirrokni, NeurIPS’17

● Distributed Balanced Partitioning via Linear Embedding: Aydin, Bateni, 
Mirrokni, WSDM’16

● Mapping Core-sets for Balanced Clustering, Bateni, Bhaskara, Lattanzi, 
Mirrokni, NeurIPS’14.

● Optimal Distributed Submodualr Maximization via Sketching, Bateni, 
Esfandiari, Mirrokni, KDD’18.
Applications in KDD’18, VLDB’19, NeurIPS’19

http://go/graph-mining


Clustering: Motivation
Clustering
Graph Mining is about pattern recognition. The 

most basic pattern is ‘these nodes are alike, 

group them together’. Clustering tools allow us 

to identify such patterns in data. With a wide 

array of clustering algorithms available, we have 

a lot of fine grained control over how clusters 

are created.

Many Applications, e.g.,
● Feature Engineering: 

○ Clusters as features & input for ML models

● Preprocessing for other Graph-based Learning

○ ClusterGCN, ego-net clusters for GNNs

● Causal inference and Experimental Design

○ Minimize interference: Section 1

● Privacy and Anonymity 

○ Min-size & anonymity clustering : Section 1

● Data Efficiency: 

○ Diversified sampling: Coverage, K-means

● Many more applications in model efficiency, 



Clustering: Many Algorithms and Techniques
● Hierarchical Clustering: Affinity, HAC, pHAC, ...

● Metric Clustering: K-means, DBScan, K-center, ...

● Clustering w/ constraints: Balanced, Min-Size, ...

● Community Detection: Modularity, Local Random 

Walk, Ego-net and Correlation Clustering, ...

Big Challenge: Doing it at Scale!

Techniques: Random Walks, Sketching and Locally 

Sensitive Hashing(LSH), Composable Core-sets, ...



Algorithms and Systems for Clustering

For each algorithm, we explore several 
combinations of systems+algorithms. For 
example, for connected components:

● MapReduce+DHT paper
● Flume via Local Contractions
● ASYMP paper
● Up to 50X speedup over baselines

→ Will discuss in the last section 

https://drive.google.com/a/google.com/file/d/0B2gZilQk8MT5WDVOeDBRU0x1azg/view?usp=sharing
https://arxiv.org/abs/1807.10727
https://arxiv.org/abs/1712.09731


Hierarchical Clustering

A Clustering method that seeks to build a 
hierarchy of clusters

Many sequential algorithms: 
HAC, Single Linkage, Avg Linkage.

Parallel Hierarchical Clustering:
Affinity Clustering, Parallel HAC. 

P 108



Parallel Linkage Clustering via use of MapReduce & Distributed Hash Tables (DHT)

● Keep heaviest edge above a threshold incident to each node
● Compute clusters and construct graph between clusters
● Iterate & Recluster

Affinity Hierarchical Clustering

.7

.5

.7

.9

Subroutine in many applications

Paper in NeuIPS’17: On Affinity Hierarchical 
Clustering, bateni et al [Video]

● Theoretical study
● Applied to graphs with Trillions of edges
● Better quality compared to HAC, k-means...

0.61.0

.5

.3

.3

.3

https://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale
https://www.youtube.com/watch?v=1IOEFNGPNJc


Affinity Clustering: Empirical Study (Quality)

● Datasets are from the UCI database and we use Euclidean distance.



Affinity Clustering: Empirical Study (Scalability)

● The first three graphs in table 1 are based on public graphs and the last 
graph is based on an internal corpus of public images found on the web 
and their similarities.



Distributed Balanced Partitioning 
via Linear Embedding and Affinity Clustering

Distributed Balanced Partitioning via Linear Embedding: Aydin, Bateni, Mirrokni, WSDM’16,



Balanced Partitioning Problem

● Balanced Partitioning:
o Given graph G(V, E) with edge weights
o Find k clusters of approximately the same size
o Minimize Cut, i.e., #intercluster edges

● NP-hard even to approximate.

● Goal: Solve at Scale



Outline of Algorithm

Three-stage Algorithm:
1. Initial Ordering: One-dimensional embedding

a. Space-filling curves
b. Hierarchical clustering 

2. Semi-local moves
a. Min linear arrangement
b. Optimize by random swaps

3. Introduce imbalance
a. Dynamic programming
b. Linear boundary adjustment
c. Min-cut boundary optimization

G=(V,E)

0 1 2 4 5 6 7 8 9 10 113

Initial ordering

0 1 2 456 78 9 10113

Semi-local moves

0 1 2 456 78 9 10113

Imbalance



Step 1 - Initial Embedding

● Space-filling curves (Geo Graphs)

● Affinity Hierarchical clustering (General Graphs)

0 1 2 3 4 5 6 7 8 9

v
0

10 11

v1
v5

A
0

A
2

 
B
0

B1

C0



Datasets

● Social graphs
o Twitter: 41M nodes, 1.2B edges 
o LiveJournal: 4.8M nodes, 42.9M edges
o Friendster: 65.6M nodes, 1.8B edges

● Geo graphs
o World graph > 1B edges
o Country graphs (filtered)



Comparison to Previous Work (LiveJournal)

k Spinner 
(5%)

UB13 
(5%)

Affinity 
(0%)

Balanced Partition 
(0%)

20 38% 37% 35.71% 27.5%

40 40% 43% 40.83% 33.71%

60 43% 46% 43.03% 36.65%

80 44% 47.5% 43.27% 38.65%

100 46% 49% 45.05% 41.53%

● Paper
○ Best balance and cut size

● Dataset
○ LiveJournal: 4.8M nodes, 42.9M edges

● Related work
○ Spinner (recent) arXiv, [Martella et al.]
○ UB13, WSDM’13 [Ugander & Backstorm]

■ Developed at Facebook
■ Balanced label propagation

https://research.google.com/pubs/pub44315.html


Comparison to Previous Work (Twitter Graph)

k Spinner 
(5%)

Fennel 
(10%)

Metis 
(2-3%)

BalancedPart. 
(0%)

2 15% 6.8% 11.98% 7.43%

4 31% 29% 24.39% 18.16%

8 49% 48% 35.96% 33.55%

o Twitter: 41M nodes, 1.2B edges 



Examples of Applications of Balanced Partitioning at Google

● Serving in Google Maps Directions
o Serve the graph out of N serves. 
o Minimize the # of multi-server source-destination pairs.

● Balanced partitioning for backend of Google Search (VLDB’19) 
o Better caching properties result in -32% flash consumption
o Affinity-aware caching via balanced partitioning

● Facilitate A/B experiments under network interference (NeurIPS’19, 
KDD’18)

o covered in the first section



Application: Cache-aware load balancing 

● TARS = term-affinitized replica selection
● "Cache-aware load balancing of data center applications," by Archer, Aydin, 

Bateni, Mirrokni, Schild, Yang, Zhuang (VLDB’19)

Balanced Graph Partition → TARS 
voting table

cache-aware replica selection

http://go/tars-paper


Cache-aware load balancing via balanced partitioning

Graph cut cost predicts FBM cache miss rate

CPU

flash IO

Impact on Search Backend: 

● -32.5% flash IO, -1.5% CPU cost

baseline DLB + TARSDLB only



Randomized Composable Core-sets

Machine 1

Machine 2

Machine m

Input Set Selected 
Items

Output 
Set

Random T1

Random T2

Random Tm

S1
S2

Sm

Run ALG on each machine

Run ALG’ on selected items to 
find the final output set

Two rounds of Computation.

Send each edge to 1 machine or constant #machines at random.



Composable core-sets: Defined on a metric space.
1. Diversity Maximization, 

○ PODS’14 by Indyk, Mahdian, Mahabadi, Mirrokni
○ for Feature Selection in AAAI’17 by Abbasi, Ghadiri, Mirrokni, Zadimoghaddam

2. Capacitated ℓp Clustering, NeuIPS’14 by BateniBhaskaraLattanziM. ← This Talk
Randomized composable core-sets: Beyond Metric Spaces. 
3. Submodular Maximization, STOC’15 by M. Zadimoghaddam
4. Feature Selection (Column Subset Selection), ICML’16 by Alschulter et al.
5. Bipartite Matching, SODA’19 by Assadi et al. 

Weighted Matching, by AssadiBateniMirrokni, ICML’2019
LSH-based composable core-sets:
6. Coverage Problems: by Bateni, Esfandiari, M., SPAA’17 + KDD’18
7. Extreme k-center via LSH-based partitioning, by Bateni, Esfandiari, Fischer, M.,

Composable Core-sets for Distributed Algorithms



Clustering:  Divide data into groups containing “nearby” points 

Minimize: 
k-center :

k-means :

k-median :

Metric space (d, X)

α-approximation
algorithm: cost less than 

α*OPT

Distributed Metric Clustering



Core-set Framework:
● Divide into chunks V1, V2,…, Vm

○ Random or using LSH
● Come up with “representatives” 

Si on machine i with size << |Vi|.
● Solve on union of Si, others by 

closest rep.

Balanced Clustering via Mapping Core--sets (Bateni, 
Bhaskara, Lattanzi, Mirrokni, NeurIPS’14)

● Theoretical guarantee: 3 rounds, constant 
approximation.

● Empirical study → next slide

Distributed Metric Clustering



Empirical Study
Aim:  Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used k=1000, #machines = 200)

US graph: N = x0 Million
distances: geodesic

World graph: N = x00 Million
distances: geodesic

size of seq. inst. increase in OPT

US 1/300 1.52

World 1/1000 1.58



Select k nodes to cover the maximum number
of neighbors

Coverage maximization



Select k nodes to cover the maximum number
of neighbors

Coverage maximization

This extends 
k-center clustering 
for which we have 
an edge between 

every two point with 
optimal distance



● Given: A family of subsets S1 … Sm
● Goal: choose k subsets S’1 … S’k with the 

maximum union cardinality.

● Technique: Sketching + CoreSets
● Generate random numbers for items.
● Keep O~(n) edges with minimum hash 

value but no more than O(n/k) per item.
○ Almost optimal approximation guarantees
○ Small sketches (0.01–3% of data) provide 

good approx (96%).
○ Bateni, Esfandiari, M., SPAA’17 and KDD’18.

Coverage Maximization

0.1 0.25 0.4 0.6 0.85 0.9



Dynamic Distributed Clustering
We focused on batch/offline algorithms in this talk and this workshop, but 

we should highlight the need for dynamic/online distributed clustering: 

Online Hierarchical Agglomerative Clustering (OHAC)
● Goal: Maintain a hierarchy over a stream of points.

● Algorithm: When a new point arrives, run a split-merge 

procedure on the existing hierarchy.

○ Split: break the hierarchy into a forest.

○ Merge: run HAC on the forest and the new point.
Menon, Rajagopalan, Sumengen, Citovsky, Cao, Kumar: Online Hierarchical 

Clustering Approximations. Arxiv abs/1909.09667 (2019)

Next, we need to combine distributed, consistent, & 
dynamic algorithms?  Work in progress, e.g.,
Italiano, Lattanzi, Mirrokni, Parotsidis, Dynamic Algorithms for the Massively 

Parallel Computation Model. SPAA’19

Fichtenberger, Lattanzi, Norouzi-Fard,  Svensson: Consistent k-Clustering for 

General Metrics, SODA’21.
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y

https://dblp.org/pid/160/5065.html
https://dblp.org/pid/64/3599.html
https://dblp.org/pid/156/1823.html
https://dblp.org/pid/152/6599.html
https://dblp.org/db/journals/corr/corr1909.html#abs-1909-09667
https://dblp.org/pid/m/VahabSMirrokni.html
https://dblp.org/db/conf/spaa/spaa2019.html#ItalianoLMP19
https://dblp.org/pid/125/2925.html
https://dblp.org/pid/11/6945.html


Conclusions: Summary of Algorithmic Techniques 
● Clustering is one of the most popular tools in the library.

● Challenge: Scalability 

● Techniques: Message Passing, Random Walks, Sketching and Locally Sensitive 

Hashing(LSH), Composable Core-sets, ...

● Many variants, e.g., we didn’t cover overlapping clustering here. Related to 

ego-Nets and also label propagation discussed later ...

● Many objectives: Next talk covers this in the context of community detection.



Further Reading
We focused on batch/offline clustering algorithms. Examples of recent papers 

not covered:

Bressan, Cesa-Bianchi, Lattanzi, Paudice, Exact Recovery of Mangled Clusters with 

Same-Cluster Queries, NeurIPS’20.

Heinrich Jiang, Jennifer Jang, Kuba Lacki, Faster DBSCAN via subsampled similarity 

queries, NeurIPS’20.

Menon, Rajagopalan, Sumengen, Citovsky, Cao, Kumar: Online Hierarchical 

Clustering Approximations. Arxiv’19.

Italiano, Lattanzi, Mirrokni, Parotsidis, Dynamic Algorithms for the Massively 

Parallel Computation Model. SPAA 2019

Ghaffari, Lattanzi, Mitrovic: Improved Parallel Algorithms for Density-Based 

Network Clustering. ICML’19.

Lattanzi, Sohler: A Better k-means++ Algorithm via Local Search. ICML’19

Monath, Dubey, Guruganesh, Zaheer, Ahmed, McCallum,  Mergen, Najork, Terzihan, 

Tjanaka, Wang, Wu: Scalable Bottom-Up Hierarchical Clustering, Arxiv’20.

Fichtenberger, Lattanzi, Norouzi-Fard,  Svensson: Consistent k-Clustering for 

General Metrics, SODA’21.

https://dblp.org/pid/160/5065.html
https://dblp.org/pid/64/3599.html
https://dblp.org/pid/156/1823.html
https://dblp.org/pid/152/6599.html
https://dblp.org/pid/m/VahabSMirrokni.html
https://dblp.org/db/conf/spaa/spaa2019.html#ItalianoLMP19
https://dblp.org/pid/33/5673.html
https://dblp.org/pid/133/7331.html
https://dblp.org/db/conf/icml/icml2019.html#GhaffariLM19
https://dblp.org/pid/47/2482.html
https://dblp.org/db/conf/icml/icml2019.html#LattanziS19
https://dblp.org/pid/10/7789.html
https://dblp.org/pid/153/2209.html
https://dblp.org/pid/49/2951.html
https://dblp.org/pid/m/AndrewMcCallum.html
https://dblp.org/pid/92/4487.html
https://dblp.org/pid/n/MarcNajork.html
https://dblp.org/pid/277/1359.html
https://dblp.org/pid/277/1380.html
https://dblp.org/pid/41/3241.html
https://dblp.org/pid/26/317.html
https://dblp.org/pid/125/2925.html
https://dblp.org/pid/11/6945.html
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Jakub Łącki

Collaborators: Vahab Mirrokni, Christian Sohler

Community detection
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Community detection

134

Method
Cluster graph 

nodes into densely 
connected subsets

Problem
Find communities 
in a social network
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Desirable properties

135

Output

Clusters ↔ ground truth 
communities

Dense, sparsely connected clusters

Large number of small clusters

Algorithm

Scalable

Provable running time and 
quality guarantees

Automatically detected number 
of clusters 
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Quality metrics & algorithms

136

Metrics

Modularity
[NewmanG, PRE’04]

Conductance

Normalized cut
[ShiM, PAMI’00]

Density

Cut sparsity

Algorithms

Spectral
[ShiM, PAMI’00]

MCL
[EnrightDO, NAR’02] 

Infomap
[RosvallB, PNAS’08]

Louvain
[BlondelGLL, JSTAT’08]

Leiden
[TraagVE, Nature’19]

Motif-based
[BensonGL, Science’16]

[TsourakakisPM, WWW’17]
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Modularity
Finding and evaluating community structure in networks. Newman, Girvan, PRE 2004

137

● deg(x) = degree of node x
● C(x) = cluster of node x
● m = number of edges

● Modularity of a clustering:

Algorithm:
● Louvain method - greedy approach
● Very effective in practice, but little theoretical guarantees
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Conductance and normalized cut

138

Conductance* of a cluster C:

number of edges leaving C
total degree of nodes in C

Total degree inside cluster = 3 + 2 + 3 + 2 = 10
Conductance = 2 / 10 = 0.2

Normalized cut of a clustering: sum of cluster conductances

φ(C) =
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Coconductance - definition
Ł., Mirrokni, Sohler, ongoing work

139

● p > 0 - parameter (canonical setting is p = 1)
● Coconductance of a clustering:

Σcluster C (1-φ(C))p

p ⟶ 0

~maximum matching

p ⟶ ∞

~ connected components

Coconductance clustering
● Maximize total coconductance
● For p = 1, closely related to normalized cut
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Coconductance - algorithms

140

Theoretical algorithm (p=1)
Constant approximation of the 

optimal solution

Linear time

Practical algorithm
Adaptation of the 
Louvain method

Good empirical 
quality
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Coconductance - empirical results

141
Datasets from SNAP, methodology from [TsourakisPM, WWW’17]
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Coconductance - empirical results

142
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Summary

143

● Active area of research

● Many existing algorithms / metrics
○ No “one-size-fits-all” solution

● New algorithm / metric: co-conductance
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Label Propagation
Allan Heydon
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Semi-Supervised Learning (SSL)

Different approaches based on the amount of labeled data:

145

Supervised
Learning

Semi-supervised
Learning

Unsupervised
Learning

All labeled Some labels (<< 10%) No labels
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Similarity Graphs

● Goal: Learn labels for unlabeled instances using context.
● Leverage similarity relationships between instances!

○ “Similar instances should have similar learned labels.”
○ Graph can be based on natural relationships or computed from node features.

● Landmark paper:
○ Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions,

X. Zhu, Z. Ghahramani, J. Lafferty, Proc of ICML-2003, Aug, 2003.
○ Solved using matrix operations, which don't scale well. 

● Idea: Iteratively propagate labels along graph edges.

146

http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf
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SSL Example - Data Instances

147
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SSL Example - Add Similarity Graph Edges

148
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SSL Example - Add "Seed" Labels

149

"9" (1.0)

"4" (1.0)
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SSL Example - Iteration 1

150

"9" (1.0)

"4" (1.0)

"4" (0.9)

"9" (0.9)

"4" (0.9)

"4" (0.9)

"4" (0.9)

"9" (0.9)

"9" (0.9)
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SSL Example - Iteration 2

151

"9" (1.0)

"4" (1.0)

"4" (0.9)

"9" (0.9)

"4" (0.9)

"4" (0.9)

"4" (0.9)

"9" (0.9)

"9" (0.9)

"4" (0.8)

"4" (0.8)

"4" (0.8)
"9" (0.8)

"9" (0.8)
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SSL Example - Iteration 3
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"9" (1.0)

"4" (1.0)

"4" (0.9)

"9" (0.9)

"4" (0.9)

"4" (0.9)

"4" (0.9)

"9" (0.9)

"9" (0.9)

"4" (0.8)

"4" (0.8)

"4" (0.6)
"9" (0.4)

"9" (0.6)
"4" (0.4)

"9" (0.8)
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Label Propagation

Label Propagation API

153

● Input:
○ Similarity signal (weighted edges)
○ Training labels/weights ("seed" vertices)
○ Test labels/weights ("validation" vertices)

● Output:
○ Learned labels for most/all vertices.
○ Thresholding is typically applied to select "strong" learned labels.

Labeled Vertices
Learned Labels

Weighted Edges

Labeled
Vertices
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SSL Applications

154

Generality of the framework permits a variety of applications:

● Spam and abuse detection (typically binary classification).
● Multi-class text and video classification.
● Identification of incorrect noisy labels to enable label cleaning.
● Natural language processing, e.g., sentiment and emotion detection, 

improving recall by identifying synonymous phrases.
● Augmentation of label data for downstream model training.
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System Properties

155

● General
○ Nodes can be of the same (homogeneous) type or of different (heterogeneous) types.
○ Graph edges can represent arbitrary similarity relationship(s) (with different types).
○ Node IDs and seed/validation labels are arbitrary strings.

● Flexible
○ Handles binary, multi-class, and multi-label problems.
○ Supports both positive and negative input label weights.
○ Pluggable vertex propagation algorithm/class (defaults to weighted average).
○ Can be used as part of a larger machine-learning pipeline.

● Scalable
○ Scales to XT edges, XXXB nodes, XXXM distinct labels.
○ Implemented as a massively parallel computation involving XK machines.
○ Optimization: keep the top K labels per node on each iteration.



Mining and Learning with Graphs at Scale  | NeurIPS’20

Label Update Function

156

● Learn by propagating labels over the graph.
● Iterative algorithm attempts to minimize the following objective function [1]:

Labeled loss Neighbor loss Prior loss

Neighbor 
penalty

Prior penaltySeed penalty 
(1.0 for seeds)

Prior labelEdge weight
Seed 

weight

Learned 
weight

[1] "Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation", S. Ravi and Q. Diao, 
Proceedings of AISTATS, May, 2016.
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Learned Label Update Function [2]

Idea: Train a model to exploit node features.

● Label update function inputs:

○ Neighbor labels.

○ Node features (tensorflow.Example)

● Leverages the power of non-linear models: 

tree-based models, DNNs.

● Model training:

○ Run LP to generate training data.

○ Train model on labeled (seed) nodes.

157

Model

Predicted Labels

Node Features
(tf.Example)

Nbr
Labels

Nbr
Labels

[2] "Collective Classification in Network Data", P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. 
Eliassi-Rad, AI Magazine, 29(3), Sept, 2008, pages 93-106,  https://doi.org/10.1609%2Faimag.v29i3.2157.

https://doi.org/10.1609%2Faimag.v29i3.2157
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Conclusions

Label propagation:

● Is a semi-supervised learning technique requiring << 10% of nodes to be 
labeled

● Leverages a similarity graph to propagate labels between neighbors
● Scales to very large graphs and large label spaces and
● Can be applied to a wide variety of problem types.
● Is available publicly as a Google Cloud AI Workshop experiment.

Google AI Blog post: Graph-powered Machine Learning at Google
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http://cloud/ai-workshop/experiments/semi-supervised-learning-with-graphs
https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html
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Graph Neural Networks and 
Graph Embeddings

PPRGo: GNNs at Scale

Debiasing GNNs

Learning Multiple Embeddings
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Section Overview

1. Graph Embeddings
2. Graph Convolutions
3. Challenges of GNNs
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An embedding is a high dimensional float-vector 

representation of information, often generated by 

the inner layer of a deep neural network.

Embedding intuition: the information is the same, 

the representation is different, e.g. rgb vs cmyk, or 

encryption. 

A graph embedding is simply a representation of 

graph data. The high dimensional graph information 

(structure/features) are mapped to a lower 

dimensional space. 

Graph Embedding



Graph Embedding
Initial work focused on using random walk 
reconstruction for unsupervised representation 
learning.

Emphasis on faithful encoding of source graph 
& communities.

163DeepWalk: Online Learning of Social Representations
B Perozzi, R Al-Rfou, S Skiena (KDD’14)

Choose 
Graph

Input

E.g: Random 
Walk Transition 
Matrix

Sample 
Sequences 
From Graph

Graph 
Sampling

E.g: Truncated 
Random Walks

Model 
Sequences

Modeling

E.g:
Skipgram

Output

DeepWalk:
Node 
Representations

DeepWalk Paradigm for Graph Representation Learning

Colors correspond 
to Labels

Community 
Structure 
Preserved



Many extensions since

2. Hierarchical Structure

3. Graph Attention Models
Fixed Context Distribution

Learnable Context

v

u
k

k

1. Directed Graphs
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Watch Your Step: Learning Node Embeddings 
via Graph Attention

S Abu-El-Haija, B Perozzi, R Al-Rfou, AA Alemi (NeurIPS’18)

HARP: Hierarchical Representation Learning for 
Networks

H Chen, B Perozzi, Y Hu, S Skiena (AAAI’18)

Learning Edge Representations via Low-Rank 
Asymmetric Projections

S Abu-El-Haija, B Perozzi, R Al-Rfou (CIKM’17)



Graph as a Modality
Graph embeddings are the foundation of 

using graphs as a data modality (like 

images), because they allow us to store, 

compare, and reason about information 

coming from many domains.

 

We can even do this for graphs which have 

complex, heterogeneous, structure.

Loss Function: Are 
these connected?

Embeddings



GCNs

Graph Convolutional Networks are a way 
to apply deep learning to local networks 
within arbitrary graph structures.

Inspired by convnets: we want to 
incorporate context!

But non-trivial to do scalably...Tensorflow 
does not like dynamically shaped inputs :(



GCNs
Implementation: turn adjacency info into a matrix.

a

b

c

d
e

f
g

x
y

z



Graph (a patch of a graph)



Seed node



1-hop Neighborhood



2-hop Neighborhood



1.2 0.4 4.6 2.1 0.0 0.1 9.4 5.3

Features



A Graph Convolution



A Graph Convolution



A Graph Convolution



A Graph Convolution



label → Compute Loss

A Graph Convolution



1. learn to predict label 
from featuresFeatures → Prediction

You can use this to label the existing 
nodes of a graph.

Learn embeddings and classification 
in one shot.

2. add predicted labels 
on unlabeled nodes

A Graph Convolution

3. Extract 
embeddings

178



The Graph Convolutional Network (GCN) Model

X W0

Node 
Labeling

1st step 2nd step

softmaxReLU
…

Normalized
Graph

* H1 W1
ReLU

*
… 

Semi-Supervised Classification with Graph Convolutional Networks
Thomas N. Kipf, Max Welling (ICLR’17) 179



Generalizations of GCNs

180

Message Passing Neural Networks:

● MPNNs can naturally incorporate 
heterogeneous vertices and edges.

● They provide arbitrary control of 
when/how messages are passed.

Neural Message Passing for Quantum Chemistry
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl (ICML’17)



1.2 0.4 4.6 2.1 0.0 0.1 9.4 5.3

MPNN: Each node has a state (embedding)

181



MPNN: Initial states are fed into GCN

h0 

182

Output of some NN



mv,w
0 = M(hv,hw )

MPNN: Messages are generated for each edge

v

wOutput of some NN

183

m



MPNN: States are updated by “message passing”

h1 = H(h0, ∑ m0)

Output of some NN

(Max, Sum, Attention,...)
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m

m

m

m

m



MPNN: ... and updated ...

ht+1 = H(ht, ∑ mt)
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m

m

m

m

m



MPNN: ... and updated.

hT   = H(hT -1, ∑ mT-1)

186

m

m

m

m

m



MPNN: Final states are “read-out”

ht 

Input for some NN

187



There’s a lot more!

188

Machine Learning on Graphs: A Model and Comprehensive Taxonomy
I Chami, S Abu-El-Haija, B Perozzi, C Ré, K Murphy (preprint)

Increased interest in the area has led to an 
explosion of models for all kinds of graph data.

Thankfully many models share common 
elements, such as an encoder/decoder 
paradigm:

The GraphEDM model.



Challenges of Graph Neural Networks

189



Representation Complexity
Unfortunately GCN’s aren’t perfect. Let’s 
recap how they work real quick: 

1) Start with a graph where each node 
has some features;

2) Aggregate the one-hop 
neighborhood of each node to 
create a context-embedding;

3) Repeat step 2 until you reach the 
desired neighborhood size;

4) Convert the final embedding into a 
label.



Representation Complexity
Unfortunately GCN’s aren’t perfect. Let’s 
recap how they work real quick: 

1) Start with a graph where each node 
has some features;

2) Aggregate the one-hop 
neighborhood of each node to 
create a context-embedding;

3) Repeat step 2 until you reach the 
desired neighborhood size.

4) Convert the final embedding into a 
label.



Oversmoothing & GCNs
Kipf and Welling (ICLR’17) demonstrate that adding 
layers after the 2nd one is a waste of time and 
compute. In theory, a GCN can learn from an 
arbitrary deep network. In practice, this will never 
happen. 



Oversmoothing & GCNs
Kipf and Welling (ICLR’17) demonstrate that adding 
layers after the 2nd one is a waste of time and 
compute. In theory, a GCN can learn from an 
arbitrary deep network. In practice, this will never 
happen. 

Why does this happen? Information in a GCN 
architecture is aggregated at each layer. This has 
two impacts:

1) Nearby neighbors are used more frequently, 
resulting in an extremely strong proximity 
bias. 

2) The model can only learn aggregations 
between hops. Nothing else.



Where GCNs Fail
We can envision an obvious failure mode of GCNs: 
when a node has the opposite labels as its 
neighbors. 

On such a prediction task, the GCN -- which is 
capable of learning only aggregations of nearby 
neighbors -- would predict the exact opposite of 
what we want.

A traditional GCN layer can only ‘view’ one 
neighborhood hop at a time. Imagine if you could 
never have a convolution filter larger than 3x3! 

Blue

What color is the 
central node?

White
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N-GCN: Mixture of Experts
First take: Capture local and global information 
from a family of GCNs trained on increasingly 
dense graphs.

Embeddings from the ensemble of networks is 
combined into a single classification verdict.

Creates rich representations in principle, but 
models are large (and therefore slow).

N-GCN Architecture

Different input 
graph for each 
network

N-GCN: Multi-scale graph convolution for semi-supervised node classification
 S Abu-El-Haija, A Kapoor, B Perozzi, J Lee (UAI’19)



MixHop: Expanding our Contextual Horizons

Better answer: expand the filter size! 
I.e., pushing multi-scale into the filter itself. 
For each layer in MixHop, we use a 0, 1, 2, 
...N hop neighborhood, and allow the layer 
to learn to aggregate across all of these 
hops simultaneously.

Mixhop: Higher-order Graph Convolution Architectures via Sparsified 
Neighborhood Mixing

S Abu-El-Haija, B Perozzi, A Kapoor, H Harutyunyan, N Alipourfard, K Lerman, G Ver Steeg, A Galstyan (ICML’19)



MixHop: Expanding our Contextual Horizons

Better answer: expand the filter size! 
I.e., pushing multi-scale into the filter itself. 
For each layer in MixHop, we use a 0, 1, 2, 
...N hop neighborhood, and allow the layer 
to learn to aggregate across all of these 
hops simultaneously.

This is a massive qualitative improvement. 
The MixHop model can learn difference 
functions across layers, which (in image 
terms) are equivalent to edge detectors. 
When stacked with other MixHop layers, 
we can build up native hierarchical graph 
representations.

MixHop. Abu-el-Haija et al. ICML’19.



More Challenges of Graph Learning
In the following sections, we’ll cover additional 
solutions we’ve developed to a number of 
practical challenges of using GNNs:

● How can we make GCNs fast?

● What biases might a GNN contain?

● How can we model complex interactions?

198

Understanding nodes 
which have multiple 

communities

Quantifying bias in 
Graph 

Embeddings

Speeding up 
Graph 

Convolutions



Citations
PAPERS:
DeepWalk: Online Learning of Social Representations
B Perozzi, R Al-Rfou, S Skiena (KDD’14)

Learning Edge Representations via Low-Rank Asymmetric Projections
S Abu-El-Haija, B Perozzi, R Al-Rfou (CIKM’17)

HARP: Hierarchical Representation Learning for Networks
H Chen, B Perozzi, Y Hu, S Skiena (AAAI’18)

Watch Your Step: Learning Node Embeddings via Graph Attention
S Abu-El-Haija, B Perozzi, R Al-Rfou, AA Alemi (NeurIPS’18)

Semi-Supervised Classification with Graph Convolutional Networks
Thomas N. Kipf, Max Welling (ICLR’17)

Neural Message Passing for Quantum Chemistry
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl (ICML’17)

Machine Learning on Graphs: A Model and Comprehensive Taxonomy
I Chami, S Abu-El-Haija, B Perozzi, C Ré, K Murphy (preprint)

N-GCN: Multi-scale graph convolution for semi-supervised node classification
 S Abu-El-Haija, A Kapoor, B Perozzi, J Lee (UAI’19)

Mixhop: Higher-order graph convolution architectures via sparsified neighborhood mixing
S Abu-El-Haija, B Perozzi, A Kapoor, H Harutyunyan, N Alipourfard, K Lerman, G Ver Steeg, A Galstyan (ICML’19)

ICONS:

account: https://thenounproject.com/search/?q=account&i=1931153
publisher: https://thenounproject.com/search/?q=publisher&i=3048742
advertise: https://thenounproject.com/search/?q=advertiser&i=2374780

https://thenounproject.com/search/?q=account&i=1931153
https://thenounproject.com/search/?q=publisher&i=3048742
https://thenounproject.com/search/?q=advertiser&i=2374780


Graph Neural 
Networks



John Palowitch, Bryan Perozzi

Google Research

Debiasing GNNs



Embeddings and embedding layers in GNNs

P 202

G = ( V, E ) G = ( V )
Vector Space

embed

Good for visualization, denoising, and scalable ML
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Many graphs cluster by attributes:

● gender, age, income, etc
● content embedding
● spatial properties

Problem: how do we learn embeddings 
unbiased by sensitive metadata?

Metadata and graph embeddings
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Many graphs cluster by attributes:

● gender, age, income, etc
● content embedding
● spatial properties

Problem: how do we learn embeddings 
unbiased by sensitive metadata?

Related work:
● Adversarial Debiasing (Bose and 

Hamilton 2019): train adversary to predict 
metadata, backpropagate inverse loss.

● FairWalk (Rahman et al 2019): make 
random walks conditionally independent 
of metadata.

Metadata and graph embeddings
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Many graphs cluster by attributes:

● gender, age, income, etc
● content embedding
● spatial properties

Problem: how do we learn embeddings 
unbiased by sensitive metadata?

Our two-part solution:

1. Learn metadata embeddings
2. Orthogonalize topology and metadata

Metadata and graph embeddings



Learn Metadata Embeddings

P 206

1. Feed random walks through encoder:
○ topology embeddings U,V

2. Feed metadata through NN:
○ metadata embeddings X, Y

3. Full graph representations:

[U, X]      [V, Y]

Hypothesis: Metadata embeddings X, Y 
encode metadata signal, debiasing U, V

Result: some debiasing occurs, but not all.



Learn Metadata Embeddings

P 207

Political Blog (“polblogs”) graph:

➔ Nodes are political blogs
➔ Edges are hyperlinks from 2004
➔ 2 clearly-defined polar clusters

Metadata Leakage: 

Theorem: Under a random gradient descent 
update from the GloVemeta model,

GloVe

metadata leakage: 6598.0 ± 200.1
F1: 95.94% ± 0.07%

Topology embedding PCA. Color = political affiliation.

GloVemeta

metadata leakage: 1827.6 ± 289.7
F1: 88.33% ± 0.60%



Learn Metadata Embeddings

P 208

1. Feed random walks through encoder:
○ topology embeddings U,V

2. Feed metadata through NN:
○ metadata embeddings X, Y



MONET: Orthogonalize Metadata and Graph Embeddings

P 209

1. Feed random walks through encoder:
○ topology embeddings U,V

2. Feed metadata through NN:
○ metadata embeddings X, Y

3. MONET: Project U, V on 
metadata-orthogonal hyperplane

4. Full graph representations:

[PZU, X]      [PZV, Y]

Result: exact linear debiasing



MONET: Orthogonalize Metadata and Graph Embeddings
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Relaxation:

𝛌∈[0, 1]



MONET: Orthogonalize Metadata and Graph Embeddings
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MONETGloVe

metadata leakage: 0.018 ± 0.002
F1: 49.30% ± 0.60%

GloVe

metadata leakage: 6598.0 ± 200.1
F1: 95.94% ± 0.07%

GloVemeta

metadata leakage: 1827.6 ± 289.7
F1: 88.33% ± 0.60%



Experiment 1: MONET debiases blog political affiliation

P 212

Key Result: MONET-debiased embeddings consistent 
with random baseline.

Linear classifier prevented from predicting affiliation.

Debiasing baselines:
● Adversarial (Bose & Hamilton 2019)
● FairWalk
● GloVemeta

Standard baselines:
● DeepWalk
● GloVe

Experiment:
1. Embed the graph
2. Train linear classifier on blog affiliation
3. Compute accuracy (higher = more bias)



Experiment 2: MONET debiases shilling attack
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Experiment:

1. Simulate spam attack on MovieLens graph
○ on 10 randomly-chosen videos

2. Fold into video-video graph & embed
○ video metadata = # known spam hits

3. Metrics:
○ # of attacked videos in 20-nn of other 

attacked videos
----> Measures bias

○ Embedding Distance MRR to top 
random walk neighbors

----> Measures signal corruption

Key Result: MONET provides tunable debiasing with 
bias-accuracy trade-off.

Exact debiasing still results in 8x gain over random.



Comparison to related work

P 214

● MONET only provides linear 
debiasing. However, unlike other 
methods, it guarantees debiasing with 
a scalable training-time operation.

● Downside of FairWalk: Nodes with 
neighbors of only one metadata class 
will not be debiased.

● Adversarial debiasing can handle 
non-linear bias in theory, but in 
practice can fail to do so.



Thank you!

P 215

Future work:

● Non-linear debiasing

● High-dimensional metadata

● Deep GNNs

Palowitch, John; Perozzi, Bryan; “MONET: Debiasing Graph Embeddings via the Metadata-Orthogonal 
Training Unit” to appear at ASONAM 2020 (arxiv:1909.11793)

https://arxiv.org/abs/1909.11793
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PPRGo: GNNs at Scale
Amol Kapoor
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Scaling Graph Neural Networks with 
Approximate PageRank

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek 
Rózemberczki, Michal Lukasik, Stephan Günnemann

KDD’20.

https://arxiv.org/abs/2007.01570

https://arxiv.org/abs/2007.01570
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Background
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GCNs: A Quick Recap

Graph Convolutional Networks are a 
way of incorporating graph context into 
the embeddings of a specific node. 
Using stacked GCN layers, we can build 
up a hierarchical representation of a 
graph.

Because each part of the graph 
convolution is learned, we can utilize 
node neighborhoods to make smarter 
decisions in a wide range of tasks. 
GCNs are therefore an extremely 
powerful and flexible part of the Graph 
Mining toolbox.

1. learn to predict label 
from features

2. add predicted labels 
on unlabeled nodes

3. Extract 
embeddings
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Scaling GCNs

Traditional GCNs operate by converting 
the adjacency of a graph into a (sparse) 
matrix, and using that adjacency matrix as 
a gather operation to select and average 
one-hop neighborhoods. 

This approach rapidly runs into memory 
issues as the size of the graph increases.

To scale to million/billion node graphs, we 
can sample patches of the graph 
(subgraphs) and train on those.

But this still poses some key challenges.
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Where GCNs Fail: Recursion

Traditional GCNs are expensive because 
they rely on recursive message passing.

To calculate the embedding of a node, I 
need to get the embeddings of its 
neighbors...and its neighbors 
neighbors...and its neighbors neighbors 
neighbors...

This is sloooooooooow! If a node’s first 
hop has 64 neighbors, and each of THOSE 
nodes has another 64 neighbors, you’re 
doing 4096 IO lookups to calculate a single 
node.

Num Hops: 0

IO Lookups: 1

Num Hops: 1

IO Lookups: 5

Num Hops: 2

IO Lookups: 17
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Where GCNs Fail: Neighborhood Heuristics

Graph Convolutional Networks also bake 
in the assumption that all neighboring 
nodes are useful for the final computation. 

In practice, this isn’t true. Only a few 
neighboring nodes end up actually being 
important.

GCNs are effective in part because they 
are scattershot -- by training over all of the 
neighboring nodes, the GCN will pick up 
the important nodes by default. But this 
isn’t scalable, especially in real world 
graphs where celebrity nodes can have 
thousands of neighbors.
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Finding PPRGo
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Key Insights

Whatever aggregation mechanism 
we use should weight nodes by 
importance. In other words, we 
don’t want to blindly aggregate our 
node neighborhoods by doing, say, 
an average.

Calculating aggregations at 
runtime is slow, but there may be 
mechanisms for separating the 
aggregation beforehand. If we can 
pre-calculate aggregations offline, 
we can save a lot of runtime.
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(Approximate) Personalized Page Rank

A quick review of personalized page rank: 
for every node, we calculate the stationary 
distribution of a random walk with some 
teleport probability. 

This gives us a weight vector of the node’s 
neighborhood. Nodes that appear 
frequently in the random walk are 
weighted higher than nodes that rarely 
appear.

Intuition: for a large random walk size, this 
is akin to an ‘infinite hop’ attention vector.
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ACL and Power Iteration

We can calculate PPR in a highly scalable, 
distributed way (using ACL’s algorithm). 
And we can do it offline, separated from 
actual model training. 

During inference, we only need the PPR 
vector once so it’s more efficient to fall 
back to Power Iteration. Power Iteration 
approach works well for large graphs with 
sparse adjacencies. Though expensive to 
calculate many times, during inference 
we only need N = 1 - 3. 
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PPRGo: Gotta Go Fast

We have the pieces necessary to create PPRGo.

- First, we calculate PPR vectors offline at scale;
- Then, we train a simple MLP model that ingests 

the node features and outputs logits;
- We aggregate those logits using the ‘attention’ 

weights of the top K nodes in the PPR vector, 
and use the aggregation to calculate a loss;

- At inference we use Power Iteration with ~2-3 
iterations to calculate an approximated PPR 
vector;

- The approximated PPR is fed into the model 
with node features to produce a final 
prediction. 



Mining and Learning with Graphs at Scale  | NeurIPS’20

PPRGo aggregates the most 

important nodes in the N hop 

neighborhood using only 1 hop of 

computation.
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Results



Mining and Learning with Graphs at Scale  | NeurIPS’20

Experimental Setup

We train PPRGo and our baselines on several 
sparsely labeled semi-supervised node 
classification tasks. 

For each dataset, we measure runtime as a 
sum of preprocessing, training, and 
inference. We also measure memory usage 
and, of course, accuracy.

Want to answer two questions:

- What is the tradeoff between accuracy 
and scalability?

- What is the resource consumption of 
PPRGo compared to other methods?

Name CORA PubMed Reddit MAG

Num Nodes 18.7K 19.7k 233K 12.4M

Num Edges 62.4K 44.3k 11.6M 173M

Num 
Features

8.7K 0.6k 602 2.8M
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PPRGo: Academic Dataset Analysis
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PPRGo: In Depth Runtime Analysis on Reddit
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PPRGo: MAG

PPRGo works best on real world graphs. Most 
academic graphs are tiny -- a few hundred 
thousand nodes is hardly a reasonable 
comparison point. 

We created a novel dataset, the MAG Scholar 
Citation Dataset. With 12M nodes and 173M 
edges, we start getting close to Google scale.

PPRGo finishes training on this dataset in < 2 
minutes. It’s the only method that actually 
finishes.
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PPRGo: Distributed MAG -- TradeOffs

Runtime: 6min

Runtime: 12min
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PPRGo: Distributed MAG -- Efficiency
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Conclusions
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Graph Convolutional Networks are 

powerful because they let us 

incorporate node neighborhoods, but 

they do so in an expensive, 

scattershot way.
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PPRGo gives us the benefit of large 

neighborhood learning with the speed 

of a single hop GNN in a trivially 

distributable manner.
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PPRGo can operate on actual large 

scale graphs, including Google scale 

graphs. It was the only learning tool 

that successfully completed the MAG 

dataset, the largest public academic 

graph that we are aware of to date.
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Learning Multiple Embeddings
Alessandro Epasto

Based on: Epasto, Perozzi. “Is a Single Embedding Enough? Learning Node 
Representations that Capture Multiple Social Contexts” WWW 2019



Mining and Learning with Graphs at Scale  | NeurIPS’20

Node Embeddings -- Why do we need them?

Graphs contain discrete information (nodes, edges).
● Most modern Machine Learning (ML) techniques operate on continuous inputs.

● Graph Embeddings are continuous representation of graphs.

● Useful for various problems, including:

○ Node Classification

○ Edge Classification

○ Link Prediction
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Review: Node Embedding via Random Walks

[2] Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014

Deepwalk [2]: simulate random walks then encode them with 
neural network.

Random Walk
v3 → v5  → v9  → v11  → v5  → ... 
…
...  

Random Walk Sequences

Neural network

Embeddings Y

v1 v2

v3 v5

v4

v6
v11

v9

.v1

.v11 .v6

.v2

.v3 .v4

.v5

.v9

 x 

 y 
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Is a single embedding enough?

In Natural Language Processing there are disadvantages to 
using a single embedding to represent a word.  

Main observation: Graphs have this problem too!

In a social network, nodes belong to multiple overlapping communities 

“Lets sit by the bank”

A financial institution?

A river side?
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Real world graphs

245

Communities overlap heavily.

More connections with 
outside than with inside

Large cut

Random walks will cross the community boundaries very often. Each node has many 
roles and belongs to many communities that the random walk will explore partially.
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Cluster Locally, Embed Globally

Solution: Community structure is more clear at the 
microscopic level of node-centric structures called 
ego-networks. Analyzing the ego-nets allows to disentangle the 
communities. 
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Ego Networks

Ego-net (Minus Ego) of 

The Ego-net (minus Ego) of node u, is defined as the induced subgraph on {N(u)}. 
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Intuition 

Intuition: while communities overlap, usually there is 
a single context in which two neighbors interact.

Family

Work
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Persona Graph
 

The persona graph, a novel graph concept based on ego-net 
analysis with applications in overlapping graph clustering, graph 
embeddings and more.  

• Highly flexible, allows use of any non-overlapping 
algorithm

• Scalable (tens of billions of nodes and edges)

• Provable theoretical guarantees for graph clustering
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Persona Graph Intuition

 

Intuition: the red node is actually two nodes which we call the 
persona nodes of the node.

Family

Work
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Persona Graph 

 

We create a Persona Graph where these two nodes are separated and we 
split the edges of the original node among the persona nodes.

Family

Work

Family Work
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The Splitter Framework Overview

 

More formally the persona graph proceeds in the following steps:

1. Create the ego-net of each node

2. Partition each ego-net with any non-overlapping  clustering algorithm

3. Create the persona graph

4. Analyze the persona graph (e.g. embed the nodes)

5. Map the results of the persona graph to the original graph
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Splitter Embedding Method

 

Ego-Net Analysis Persona Graph

.U1

.C .D

.A1

.A3 .B
.U2

.A2

 x 

 y 

Splitter Embedding 

.U
.C .D

.A
.B

 x 

 y 

Normal Embedding 

Regularization
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Splitter Embeddings

 

Original Graph 

Persona Graph 

node2vec

splitter
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Link Prediction Results 

 

We use the simple max aggregation of dot products for 
link prediction using persona embeddings.
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Visualization: Co-Authorship Graphs

 

node2vec splitter

One representation 
for prolific author 

inside of “Data 
Mining” cluster.

Many 
representations, 

scattered between 
Data Mining and IR
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1. How do the multiple meanings relate to each other?

2. How can we use them in different tasks?

a. Link prediction 

b. Node classification → ???

Conclusions and future questions
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Algorithms, 
systems and 

scalability

Martin Blais, Jakub Łącki 

Graph Neural Networks in 
Tensorflow

Graph algorithms in the 
distributed setting

Multi-core parallel graph 
clustering

258
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Graph Neural Networks in TensorFlow 
(a.k.a. “Graph Tensor”)
Martin Blais (blais@google.com)
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Motivation

Common infrastructure for building GNNs on TensorFlow.

Why?
● Consulting with many internal teams within the company working with 

GNNs, we realized that a significant portion of development time was 
spent on data representation.

● After our second system, we realized the right shape that the third 
version should have (and this is it).

260
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Goal

“Build the ultimate toolkit for building and training 
GNN models on very large graphs on top of TensorFlow.”

● Supports many model types, graph types, arbitrary feature shapes
● Scalable and distributed by default
● Handles irregular representation, sampling and I/O out of the box
● Integrates well with TensorFlow

This is a preview; we’re working on an open source release

261

http://tensorflow.org
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Supervised models

Classification from surrounding 
neighborhood features

Semi-supervised models

Learn from propagating labels 
from the neighborhood

Unsupervised models

Train node-level embeddings to 
describe the structural role of the 

data (e.g. DGI)

Types of Models
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Homogeneous models

One type of node

One type of edge

Heterogeneous models

Multiple types of nodes

Multiple types of edges

Directed or undirected

Types of Graphs
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Features can attached to

● Node sets
● Edge sets
● Graph

(Multiple features per set)

Arbitrary shapes
● scalar
● dense
● ragged

Types of Features

scalar features
e.g. edge weights

features with rank > 1
e.g. embeddings

variable-shaped features
e.g. sentences of words

graphs

nodes/edges

graphs

nodes/edges

ra
gged dim

ensio
ngraphs

nodes/edges

dense
 dim

ensio
n

● Provides RaggedTensors
● Labels are just features
● Supports latent nodes with no 

features
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Graph Schema
node_sets {
  key: "user"
  value {
    description: "An end user who watches videos."

    features {
      key: "account_age"
      value: {
        description: "The number of days since account was created."
        dtype: DT_INT64
      }
    }
  }
}

node_sets {
  key: "video"
  value {
    description: "Unique video content."

    features {
      key: "title"
      value: {
        description: "The title of the video (bag of words)."
        dtype: DT_STRING
        shape { dim { size: -1 } }
      }
    }
    features {
      key: "days_since_upload"
      value: {
        description: "The number of days since upload."
        dtype: DT_INT64
      }
    }
  }
}

edge_sets {
  key: "watches"
  value {
    description: "Watches of videos by users."
    source: "user"
    target: "video"
  }
}

edge_sets {
  key: "co-watch"
  value {
    description: "Co-watch similarity graph between users."
    source: "user"
    target: "user"

    features {
      key: "similarity"
      value: {
        description: "The Jaccard similarity of the video sets between users."
        dtype: DT_FLOAT
      }
    }
  }
}

context {
  features {
    key: "label_class"
    value: {
      description: "A label, ground truth."
      dtype: DT_STRING
    }
  }
}

nodes edges

graph
feature 
declarations

source/target
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Library Overview

Graph Sampler sampled 
subgraphs

Training data:
sampled subgraphs
with node & edge 

features

(TFRecords of tf.Example)

graph sampling & 
data preparation 

tools

tf.Example 
parser

nodes

edges

context

“Graph” data structure 
(with tf.RaggedTensor)

feature 
encoding & 

model

graph 
operations

model training binary
Graph 

Schema

stats tool
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Scalability via Subgraphs on Receptive Field
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Distributed Training

PS PS PS PS

WorkerChief Worker Worker Worker Worker Worker Worker Worker

sharded 
files of 

sampled 
subgraphs

shared 
model 

parameters

model 
checkpoint

model 
checkpoint

model 
checkpoint

model 
checkpoint

model 
checkpoint
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Training Data Preparation: Graph Sampling 

Two common scenarios:
1. A graph is provided

a. Apply region growing algorithm sampling over edges to produce subgraphs.

2. There is no graph; 
a. Sample references between entities from relational tables (i.e., a database). 

This is very common in building heterogeneous models.
b. Build a graph (see GRALE paper), then → Process using graph sampler → (1).

External tools:
● Small graphs that fit in-memory: Conversion from NetworkX
● Scalable sampler using Apache Beam (runs on Cloud Dataflow / Spark)
● Custom converters for public datasets, e.g. OGB  →  research
● A builder API to implement your own encoders
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https://arxiv.org/pdf/2007.12002
https://networkx.org/
https://ogb.stanford.edu/
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Utility Library Functions

● Extract sparse adjacency matrix
● Insert self-edges
● Convert to undirected
● Mask out some nodes, mask out some edges
● Extract seed node mask
● Simple convolution (gather + segment reduction (e.g, max, sum))
● Insert self-attention layers

… and more

270
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Integrations

The TF GNN library is agnostic to model API; integrates with

● DeepMind GraphNets: Consume graph tensors → adapt to GraphsTuple
● Google Neural Structured Learning (with GraphNets)
● TF GNN API (own API) — Based on MPNN paper [Gilmer 2017]

The “Graph” container object is a TF Extension Type (a composite tensor):

● It can be passed around Keras layers.
● It supports batching, unbatching/flattening and serialization and tf.data.
● Supports custom hardware (TPUs)

271

https://github.com/deepmind/graph_nets
https://www.tensorflow.org/neural_structured_learning
https://arxiv.org/pdf/1704.01212.pdf
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Graph algorithms
in the distributed setting
Jakub Łącki

Based on joint work with Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, 
Vahab Mirrokni, Warren Schudy, and Michał Włodarczyk
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Graphs are big

Hyperlink2012

200B edges

273

Human brain

>100T connections

Web graph
Google (2018)

6.5T edges

How to mine graphs with billions / trillions of edges?

Image: https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png
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Two approaches to processing large graphs

Multi-core parallel

1 machine
100s logical CPUs

~1TB RAM

274

Distributed

up to ~10k machines
up to ~10k CPUs

many terabytes of RAM

This talk Next talk
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Agenda

275

Challenges & techniques

Example: connected 
components

Extended models 
of computation

Introduction
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Running in a shared datacenter

276

Goals: 
● Speed & scalability
● High reliability
● Low cost

Use whatever capacity the top tier 
jobs don’t use:
● Very common failures due to 

preemptions
● All data must be saved to disk
● Lower resource cost

Borg: the Next Generation. Tirmazi, Barker, Deng, Haque, Qin 
Hand, Harchol-Balter, Wilkes, EuroSys'20.
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Challenges of big graphs - data skew

Cluster sizes in a web graph (8.5B nodes, 700B edges)
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● Many popular frameworks

○ MapReduce / Hadoop 
[DeanG, OSDI’04]

○ Pregel / Giraph 
[MalewiczABDHLC, SIGMOD’10]

○ Beam / Flume / Cloud Dataflow
[AkidauBCC+, VLDB’15]

○ ...

● High-level abstraction over distributed setting

● Fault tolerance

○ Computation (mostly) in synchronous rounds

○ Different checkpointing strategies

● All provide a very similar model of computation

278

Distributed computation frameworks
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Distributed computation in practice

279

= machine

● Computation in synchronous rounds

● In each round, a machine:

1. Receives messages from 
previous rounds 

2. Performs arbitrary computation
3. Sends messages to other 

machines
● All communicated data saved to 

persistent storage (fault tolerance) = communication

INPUT

}

= synchronization

R
O

U
N

D
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Distributed computation - desirable features

Running time
Low number of rounds 

(ideally O(1) or O(log n))

Each machine takes 

near-linear time in the 

input size 

Load balancing
No machine is 

overloaded

Communication
Linear communication per 

round

Communication balanced 

among machines
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MPC model
A Model of Computation for MapReduce. KarloffSV,  SODA’10

281

= machine = communication

● MPC = Massively Parallel Computation

● Input of size N

● M machines with space S

● N ≈ M*S

○ Machines can (barely) store the input

● S = Nε   for some ε ∊ (0, 1)

○ Each machine can see a small fraction of the 

input

INPUT
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MPC model
A Model of Computation for MapReduce. KarloffSV,  SODA’10

282

● Key restriction (load balancing)
○ each machine sends/receives data of size 

O(S) in each round
● Goal

○ Minimize #rounds

INPUT
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Example problem: connected components

283

Two vertices in the same connected component 

There is a path connecting them
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Connected components - applications

284

(Hierarchical) Clustering Deduplication Building block for 
other algorithms

Connected components is the most popular graph computation
The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing. Sahu, Mhedhbi, Salihoglu, Lin, Özsu, VLDB’18
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Connected components - algorithms

Efficient implementations

HashToMin 
[RastogiMCS, ICDE’13]

TwoPhase
[KiverisLMRV, SOCC’14]

Cracker
[LulliRCDL, ISCC’15]

LocalContract
[Ł.MW, arxiv]

Theory algorithms

O(log n)
[KarloffSV,  SODA’10]

O(log log n) in random graphs
[AssadiSW,  PODC’19]

O(logm/n log n log D)
[AndoniSSWZ, FOCS’18]

O(logm/n log n + log D)
[BehnezhadDEŁ.M, FOCS’19]

D = graph diameter
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Connected components algorithm
Connected components at scale via local contractions. Łącki, Mirrokni, Włodarczyk, arxiv
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while G has any edges

for each vertex v

label(v) := Uniform[0, 1]

best(v) := neighbor w of v minimizing label(w)

group nodes by best(v) and merge together

● In each iteration, the number of vertices shrinks by a constant factor

○ Algorithm requires O(log n) MPC rounds

● Similar algorithm takes O(log log n) rounds in random graphs
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Connected components - relative running times
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Graph 
(#edges)

Orkut 
(117M)

Friendster 
(1.8B)

Clueweb 
(37.3B)

videos 
(626B)

webpages 
(6.5T)

New 1.0 1.0 1.0 1.03 1.0

Cracker 1.38 1.16 2.65 1.0 ~3.0

TwoPhase 5.77 1.73 1.77

HashToMin 5.84 20.27
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Connected components - theory
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Theorem
Near-Optimal Massively Parallel Graph Connectivity. Behnezhad, Dhulipala, Esfandiari, Łącki, Mirrokni, FOCS’19

Connected components can be found in O(logm/n log n + log D) rounds, where 
D is the diameter of the input graph. 

Conjecture

Finding connected components requires Ω(log n) rounds. 

In the MPC model with O(nε) space per machine:  
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Connected components - hard instance
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Distinguish between a cycle on 2n nodes and two cycles on n nodes

Conjecture: requires Ω(log n) rounds in MPC model
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Connected components - main challenge
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Intuitive goal: aggregate consecutive nodes on one machine

2 rounds

Each machine has k nodes Each machine has 3k nodes

Workaround: give machines random read access to the graph
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Random read access
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● Store the graph in a distributed hash table
● Allow machines to read the graph adaptively within a round

Example:

● Input: collection of rooted trees

● A node can find the root of its tree in 

a single round

● Used in affinity clustering
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Adaptive MPC model
Massively Parallel Computation via Remote Memory Access. Behnezhad, Dhulipala, Esfandiari, Łącki, Schudy, Mirrokni, SPAA’19
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Distributed hash table

Distributed hash table

Modification of MPC. Differences:

● All messages saved to a distributed 

hash table (DHT)

● In the following round each machine 

can adaptively read O(S) values 

from the DHT

Same bounds on communication
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Adaptive MPC - realism
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Distributed hash table

Distributed hash table

Is the model realistic?

● Remote read latency?

○ Use hardware support (RDMA)

○ 1-3 μs  (~20x slower than RAM)

● Fault tolerance?

○ Relies on a fault-tolerant 

distributed hash table
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Adaptive MPC - theory results

Problem MPC AMPC

Maximal Independent Set Õ(sqrt(log n)) O(1)

Connectivity O(log D) O(1)

Minimum Spanning Tree (MST) O(log n) O(1)

Approximate matching Õ(sqrt(log n)) O(1)

Assumptions
● nε space per machine
● Graph has n1+ε edges
● D = graph diameter
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Adaptive MPC - empirical results
Parallel Graph Algorithms in Constant Adaptive Rounds: Theory meets Practice. Behnezhad, Dhulipala, Esfandiari, Łącki, Mirrokni, Schudy, VLDB’20.

Problem
MPC 

rounds
AMPC 
rounds

AMPC 
Speedup

Minimum spanning forest 33-84 5 2.6x - 7.2x

Maximal independent set 8-14 1 2.3x - 3x

Maximal matching 8-16 1 1.16x - 1.7x

Results on 5 graphs of up to 225B edges
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ASYMP: Fault-tolerant Mining of Massive Graphs Asynchronously
ASYMP: Fault-tolerant Mining of Massive Graphs. Fleury, Lattanzi, Mirrokni, Perozzi, arxiv.

● Shortest paths - hard to solve in (A)MPC model

● Solution: ASYMP = new framework for message passing algorithms

Asynchronous message passing Light fault tolerance
Asynchronous checkpoints

More efficient CPU 
utilization

Impressive performance 
(shortest paths)

How to use for other 
problems?
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Conclusion

● Many interesting problems on the boundary 

of algorithms & systems

● Distributed systems allow handling graphs 

with trillions of edges

● Read-only access to the input allows 

significant speedups

● What about large-but-not-huge graphs?

○ Big overhead / resource usage of a distributed system

○ Next talk: working with graphs of up to 10B edges on a single machine
Image: https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png
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Jakub Łącki

Collaborators: David Applegate, Laxman Dhulipala, David Eisenstat, Heinrich Jiang,
Vahab Mirrokni, Jessica Shi

Multi-core parallel clustering
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Goal

299

Cluster billion-edge graphs in few minutes on a single machine
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Multi-core parallel graph algorithms
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Basic graph problems on a 225B-edge graph can be solved in <3 minutes
Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable.  Dhulipala, Blelloch, and Shun, SPAA’18
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Multi-core algorithms are fast and cost-effective
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Efficient multi-core algorithms can outperform high-end supercomputers at low cost 
ConnectIt: A Framework for Static and Incremental Parallel Graph Connectivity Algorithms. Dhulipala, Hong, and Shun, VLDB’21

FastSV [Zhang et al. 2020] is run on a Cray XC40 supercomputer.
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Multi-core parallel clustering
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● Clustering is a complex problem

○ High running time complexity

○ Input is a weighted graph

● We develop parallel clustering algorithms 

for billion-edge graphs

○ Affinity clustering

○ Correlation clustering

○ Modularity clustering
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GBBS framework
Laxman Dhulipala (MIT), Jessica Shi (MIT), Tom Tseng (MIT), Guy Blelloch (CMU), Julian Shun (MIT)
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C++ library for implementing parallel graph algorithms

https://github.com/ParAlg/gbbs

Graph representation Parallel graph primitives 

(low level)

Parallel scheduler Work-efficient implementations 

polylog depth

https://github.com/ParAlg/gbbs
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Affinity clustering

304

● Clustering of weighted graphs

● Recap: each node in the same cluster as its most similar neighbor

● Parallel algorithm repeats the following steps:
a. Mark highest-weight incident edge of each node

b. Find connected components of the marked edges

c. Contract each cluster to a single node

4

3

2

linkage({2, 3})
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Parallel affinity clustering - quality
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Graph
Adjusted RAND index

Affinity HAC DBScan Modularity

banknote 0.8467 0.4637 0.7903 0.3219

glass 0.8525 0.7852 0.7125 0.5800

images 0.5224 0.5551 0.5053 0.5731

iris 0.8858 0.7455 0.8858 0.5526

letters 0.2890 0.2670 0.1914 0.2480

pageblocks 0.2001 0.0722 0.1481 0.0528

phoneme 0.7324 0.7908 0.7732 0.7678

seeds 0.7329 0.5877 0.7171 0.7066

Datasets from UCI, Kaggle and The elements of statistical learning, Friedman, Hastie, and Tibshirani. 



Mining and Learning with Graphs at Scale  | NeurIPS’20

Parallel affinity clustering - performance

306

#edges Serial Parallel Speedup

117M 110s 26s 4.2x

922M 450s 153s 2.9x

1.8B 5593s 640s 8.7x ⬅ 200 GB RAM

Clustering times (excl. I/O time)
All times from a shared machine in a production cell
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Correlation clustering
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Input: graph with positive / negative edge weights

● Positive edge ~ endpoints should be in the same cluster

● Negative edge ~ endpoints should be in different clusters

Objective: maximize sum of edge weights within clusters

4

2

-3

2 1

3

-4

Objective = 9
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Correlation clustering algorithm
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Start with each node in its cluster

1. Find each node’s best move (to a cluster based on objective)

2. Find each cluster’s best move (to merge with a cluster)Ite
ra

te
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Parallel correlation clustering algorithm
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Start with each node in its cluster

1. Find each node’s best move (to a cluster based on objective)

2. Find each cluster’s best move (to merge with a cluster)

Compute best moves in parallel + aggregate new clusters in parallel

Compute best moves in parallel + aggregate new clusters in parallel

Ite
ra

te
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Parallel correlation clustering - empirical results
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#edges serial parallel speedup

380M 413 80 5.1x

950M 1184 301 3.9x

#edges serial parallel difference

380M 2.4464 2.3081 94.3%

950M 4.7052 4.6943 99.7%

Objective value (scaled by 107)

Running time (seconds)
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Summary

Parallel in-memory algorithms

● Can be both faster and cheaper than 

distributed algorithms

● Can cluster XB-edge graphs in few minutes

● Speed up clustering 3-9x compared to 

serial baselines

Download:

github.com/google-research/google-research/tree/master/parallel_clustering/

http://github.com/google-research/google-research/tree/master/parallel_clustering/
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